
Design De
isions for UML and MOF based

Domain-spe
i�
 Language Models: Some Lessons

Learned

∗

Bernhard Hoisl

1,2
, Stefan Sobernig

1
, Sigrid S
hefer-Wenzl

1,2
, Mark

Strembe
k

1,2
, and Anne Baumgrass

1,2

1
Institute for Information Systems, New Media Lab,

Vienna University of E
onomi
s and Business (WU Vienna)

2
Se
ure Business Austria Resear
h (SBA Resear
h)

{firstname.lastname}�wu.a
.at

Abstra
t. In re
ent years, the development of domain-spe
i�
 modeling

languages (DSMLs) that are based on the MOF and/or UML has be
ome

a popular option in the model-driven development
ontext. As a result,

the model-driven software engineering
ommunity
olle
ted many design

and implementation experien
es. However, most resear
h
ontributions

on this topi
 do not aim at supporting the DSML development pro
ess as

a repetitive de
ision-making pro
ess. In this paper, we do
ument some of

our experien
es gathered from developing ten MOF/UML-based DSMLs

and present our experien
es in a reusable manner via de
ision templates.

In parti
ular, this paper fo
uses on design de
isions for the initial phase

of the DSML development pro
ess, i.e. the de�nition of the DSML's
ore

language model.

Keywords: Domain-spe
i�
 modeling, Domain-spe
i�
 languages, De-

sign de
isions, UML, Model-driven development

1 Introdu
tion

In model-driven development (MDD), a domain-spe
i�
 modeling language

(DSML) is a spe
ialized modeling language tailored for a parti
ular appli
ation

domain (e.g., a

ess
ontrol, ba
kup poli
ies, or system auditing) (see, e.g.,

[1,2,3,4℄). Thus, a DSML's abstra
tion level, its expressiveness, and
on
rete

syntax are
ustomized for software developers and for experts in the DSML's

appli
ation domain. Often DSMLs are developed based on the Uni�ed Model-

ing Language (UML) [5℄. The UML
an leverage industry-grade tool support,

s
ienti�
 evaluations of its semanti
 foundations, and standardized modeling

extensions (e.g., SoaML for servi
e-oriented systems [6℄). The UML bene�ts

∗

This work has partly been funded by the Austrian Resear
h Promotion Agen
y

(FFG) of the Austrian Federal Ministry for Transport, Innovation and Te
hnology

(BMVIT) through the Competen
e Centers for Ex
ellent Te
hnologies (COMET K1)

initiative and the FIT-IT program.

303

2 De
isions for UML and MOF based DSL Models: Lessons Learned

from its organizational maintenan
e through the Obje
t Management Group

(OMG) and builds upon a standardized metamodel: the Meta Obje
t Fa
ility

(MOF) [7℄. With this, the MOF and the UML provide a ri
h DSML development

toolkit.

In re
ent years, a number of
ontributions dis
ussed the development of

domain-spe
i�
 languages (DSLs). Examples in
lude empiri
al resear
h eviden
e

(e.g.,
ase study resear
h [8,9,10℄), DSL development pro
esses [1℄, develop-

ment guidelines and patterns [2,3,4,11℄, or sele
ted fa
ets of UML-based DSMLs

[12,13℄. Despite the availability of su
h sour
es of design knowledge, most
ontri-

butions fall short in one or several respe
ts: Many experien
es la
k empiri
ally

gathered eviden
e (e.g., an expli
itly do
umented resear
h design). Many are

not spe
i�
ally tailored toward DSMLs in general, or MOF/UML-based DSMLs

in parti
ular, but rather toward textual DSLs. Others re�e
t design knowledge

whi
h is spe
i�
 to a parti
ular toolkit (e.g., the E
lipse Modeling Framework,

EMF). Our work
omplements the experien
es mentioned above by providing

reusable design knowledge for designing the
ore language model of MOF/UML-

based DSMLs; i.e. spe
i�
 options,
onsequen
es, and dependen
ies of de
isions

in this parti
ular phase of DSML development.

The purpose of this paper is to present our experien
es, lessons learned, and

some of the
hallenges we fa
ed while developing ten MOF/UML-based DSMLs

over the last years. For an overview of these proje
ts see Table 1 (P1�P10). From

these experien
es, we extra
ted two de
ision points with
orresponding de
ision

options for the initial DSML development phase of
onstru
ting the
ore language

model. The
ore language model
aptures all relevant domain abstra
tions and

spe
i�es the relations between these abstra
tions. A

ordingly, we de�ned a
ore

language model for ea
h of our DSMLs. We do
ument the design de
isions in

a reusable manner by adopting de
ision templates inspired by related work on

do
umenting ar
hite
tural design de
isions (see, e.g., [3℄). The basi
 phases of

DSML development are adopted from [1℄.

The remainder of the paper is stru
tured as follows: In Se
tion 2, we intro-

du
e the pro
ess model of DSML development a

ording to [1℄. In Se
tion 3, we

des
ribe the relations between the de
isions and the respe
tive de
ision options

in a stru
tured manner. Limitations of our
ontribution are dis
ussed in Se
tion

4. Se
tion 5 provides an overview of related work and Se
tion 6
on
ludes the

paper.

2 Ba
kground: DSML Development Phases

Before we outline the lessons learned from our DSML proje
ts (see Table 1), we

give an overview of the DSML development pro
ess applied in our proje
ts (for

a detailed dis
ussion see [1℄). The following steps were performed iteratively to

build the DSMLs:

De�ne DSML
ore language model One �rst de�nes an initial
ore lan-

guage model and the
orresponding language model
onstraints for the target

domain. By following a domain analysis method, su
h as domain-driven design

304

De
isions for UML and MOF based DSL Models: Lessons Learned 3

Obje
tives Domain

P1

An approa
h to model interdependent
on
ern behavior using

extended UML a
tivity models [14℄.

Separation of
on
erns

P2

An integrated approa
h for modeling pro
esses and pro
ess-

related RBAC models (roles, hierar
hies, stati
ally and dynam-

i
ally mutual ex
lusive tasks et
.) [15℄.

Business pro
esses, role-

based a

ess
ontrol

(RBAC)

P3

A UML extension for an integrated modeling of business pro-

esses and pro
ess-related duties; parti
ularly the modeling of

duties and asso
iated tasks in business pro
ess models [16℄.

Business pro
esses,

pro
ess-related duties

P4

An approa
h to provide modeling support for the delegation of

roles, tasks, and duties in the
ontext of pro
ess-related RBAC

models [17℄.

Business pro
esses, delega-

tion of roles, tasks, and du-

ties

P5

A UML extension to model
on�dentiality and integrity of ob-

je
t �ows in a
tivity models [18℄.

Data
on�dentiality and

integrity

P6

UML modeling support for the notion of mutual ex
lusion and

binding
onstraints for duties in pro
ess-related RBAC models

[19℄.

RBAC (
onsisten
y
he
ks

for duties)

P7

In
orporation of data integrity and
on�dentiality into the

model-driven development of pro
ess-driven servi
e-oriented ar-

hite
tures [20℄.

Integrity and
on�dential-

ity for servi
e invo
ations

P8

Integration of
ontext
onstraints with pro
ess-related RBAC

models and thereby supporting
ontext-dependent task exe
u-

tion [21℄.

Business pro
esses, RBAC,

ontext
onstraints

P9

A generi
 UML extension for the de�nition of audit requirements

and spe
i�
ation of audit rules at the modeling-level [22℄.

Audit rules

P10

An approa
h based on model transformations between the valid

stru
tural and behavioral runtime states that a system
an have

[23℄.

Model transformation

Table 1. Overview of
ondu
ted DSML development proje
ts.

(see, e.g., [24℄), domain abstra
tions are identi�ed and form the language model

of a DSML. Be
ause the language model often
annot
apture all restri
tions

and/or semanti
 properties of the DSML elements, language model
onstraints

are added, if ne
essary. This phase results in the DSML
ore language model and

a
atalog of DSML language model
onstraints.

De�ne DSML
on
rete syntax In this phase, graphi
al or textual notation

symbols as well as
omposition and produ
tion rules are de�ned. The DSML

ore language model and the DSML language model
onstraints serve as input

to produ
e the DSML
on
rete syntax spe
i�
ation.

De�ne DSML behavior The behavior spe
i�
ation of a DSML determines

how the DSML elements intera
t to produ
e the behavior intended by the DSML

designer. Syntax and behavior of a DSML are usually de�ned in parallel. The

DSML behavior spe
i�
ation (e.g.,
ontrol �ow models, formal textual spe
i�
a-

tions) is the output of this phase.

DSML platform integration All artifa
ts de�ned for a DSML are mapped

to the features of a sele
ted platform, either by extending an existing platform

or by developing a new tool set. Platform integration is a
hieved by de�ning

model transformations (see, e.g., [25℄) to
onvert a model into another platform-

spe
i�
 model (model-to-model transformation, M2M) or into ma
hine-readable

software artifa
ts (model-to-text transformation, M2T).

305

4 De
isions for UML and MOF based DSL Models: Lessons Learned

#
De
ision/Option

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

D1
Language model formalization

O1.1
M1
lass model

O1.2
Pro�le de�nition × × × × ×

O1.3
Metamodel extension × × × × × × × × × ×

O1.4
Metamodel modi�
ation

O1.5
Combination of options

1

⊂ ⊂ ≍ ⊂ ⊂

D2
Language model
onstraints

O2.1
Expli
it
onstraint expressions × × × × × × × × × ×

O2.2
Code annotations

O2.3
Constraining M2T transformations × ×

O2.4
Textual annotations × × × ×

O2.5
Combination of options

1

≍ ⊂ ≍ ⊂ ⊂ ⊂

O2.6
None

Table 2. Overview of design de
ision points and options.

3 Colle
ted De
isions on the Core Language Model

Most of our DSMLs (see Table 1) provide modeling support for di�erent types of

se
urity aspe
ts in a business pro
ess
ontext. P10 [23℄ is an ex
eption and aims

at des
ribing program transformations in dynami
 programming environments.

Ea
h of the ten DSML proje
ts adopted the development pro
ess sket
hed in

Se
tion 2. However, due to di�ering requirements, we did not always perform all

DSML development phases. For example, we do not provide platform integration

for P10. Thus, to do
ument our experien
es from the ten proje
ts, we fo
us on

a single phase and on two spe
i�
 de
isions that appeared in ea
h of the ten

proje
ts. In parti
ular, this paper reports on the
ore language model de�nition

and on the respe
tive design de
isions.

For ea
h
ase presented in Table 1, we identi�ed di�erent de
ision options.

The development of a DSML
ore language model requires two important de
i-

sions: DSML language model formalization (Se
tion 3.1) and de�ning language

model
onstraints (Se
tion 3.2). Table 2 summarizes these options for both de-

sign de
ision points and lists the options adopted for ea
h of the ten
ases. Fig.

1 depi
ts an overview of the two de
isions, the
orresponding options, as well as

the interdependen
ies between the de
isions and their options. These relations

are then dis
ussed for ea
h de
ision in the respe
tive Consequen
es sub-se
tion

(see below).

3.1 D1 Language Model Formalization

De
ision In whi
h way should the domain
on
epts be formalized?

Context Domain abstra
tions are identi�ed and form the language model of

a DSML (i.e., the abstra
t syntax). This language model de�nition
an be ex-

pressed, for instan
e, in a narrative text form, with mathemati
al expressions

(e.g., set algebra), or via a modeling language (e.g., the UML). The language

model de�nition serves as input for the phase of formalizing the domain
on-

stru
ts into the
ore language model expressed via the UML.

1

⊂ options
omplementary; ≍ options equivalent

306

De
isions for UML and MOF based DSL Models: Lessons Learned 5

D1

Language model

formalization

O1.1 Class

model

O1.2 Profile

definition

O1.3 MM

extension

O1.4 MM

modification

O1.5 Combi-

nation

D2

Language model

constraints

O2.1 Explicit

constraints

O2.2 Code

annotations

O2.3 M2T

constraints

O2.4 Textual

annotations

O2.6 None

O2.5 Combi-

nation

R4

R6

R5

R2

R1

R3

Fig. 1. Relations (R1�R6) between de
ision options.

Options For UML-based DSMLs, the language model
an be de�ned within the

boundaries of the modeling language via dedi
ated language extension
onstru
ts

(su
h as UML pro�les) or by extending the modeling language to provide the

required semanti
s (see, e.g., [5,26℄).

O1.1 M1
lass model : UML
lass models are an ad-ho
 instrument to for-

malize domain abstra
tions. Domain
on
epts
an be expressed as
lasses and

relationships as asso
iations.

O1.2 Pro�le de�nition: Pro�les are a language extension option to tailor the

UML for di�erent purposes. A pro�le
onsists of a set of stereotypes whi
h de�ne

how an existing UML meta
lass may be extended.

O1.3 Metamodel extension: A metamodel extension introdu
es, for instan
e,

new meta
lasses and/or new asso
iations between meta
lasses (MOF-based ex-

tension [7℄).

O1.4 Metamodel modi�
ation: In
ontrast to a metamodel extension, existing

meta
lasses of the UML metamodel are modi�ed; e.g., by
hanging the type of

a
lass property or by deleting existing asso
iations (MOF-based extension [7℄).

O1.5 Combination of options : A
ombination may in
lude the de�nition of a

metamodel extension as well as an equivalent pro�le de�nition (e.g., P7). Simi-

larly, stereotype de�nitions
an be provided to a

ompany a metamodel modi�-

ation (e.g., P9).

Drivers

Domain spa
e: The degree of overlap between the domain spa
e of the DSML

on
epts and the general purpose language
onstru
ts (i.e., the UML spe
i�
a-

tion) has a dire
t impa
t on whether a pro�le de�nition is su�
ient or on whether

a metamodel extension/modi�
ation is needed (O1.2�O1.4). In general, a UML

extension is reusable if it is
ompliant with the UML standard.

DSML expressiveness : For instan
e, a UML pro�le (O1.2)
an only spe
ialize

the UML metamodel in su
h a way that the pro�le semanti
s do not
on�i
t with

the semanti
s of the referen
ed metamodel. Therefore, pro�le
onstraints may

307

6 De
isions for UML and MOF based DSL Models: Lessons Learned

only de�ne well-formed rules that are more
onstraining (but
onsistent with)

those spe
i�ed by the metamodel [5℄. In
ontrast, a metamodel extension/modi-

�
ation (O1.3 and O1.4) is only limited by the
onstraints imposed by the MOF

metamodel.

Portability and evolution: A metamodel extension/modi�
ation (O1.3 and

O1.4)
reates a fork of a
ertain version of the UML spe
i�
ation. The metamodel

does not inherit revisions
oming from newly released OMG spe
i�
ations and

an deviate from the UML or MOF standard.

DSML integration: Available DSMLs, software systems, and tool support

have a dire
t impa
t on the design pro
ess of a DSML in terms of integration

possibilities. For instan
e, the UML spe
i�
ation de�nes a standardized way to

use i
ons and display options for pro�les (O1.2). Tool support for authoring

UML
lass models and pro�les (O1.1 and O1.2) is widely available.

Consequen
es (see Fig. 1)

R1 Constraint limitations for
lass models : A
lass model de�nes a language

model at the UML instan
e level (i.e. at the M1 level, see [7℄). This means,

no metamodel is de�ned to re�e
t the domain spa
e and, thus, domain
on
epts

an neither be instantiated nor expli
itly
onstrained for their usage as modeling

onstru
ts. Thus, restri
tions
an only be de�ned in terms of text annotations

atta
hed to the language model.

R2 Pro�le dependen
y : Dependen
ies
an o

ur from
ombined language

model formalizations. For instan
e, pro�les are dependent on the UML meta-

model. If a pro�le is
ombined with a metamodel modi�
ation,
hanges to the

metamodel
an lead to impli
it and unwanted
hanges a�e
ting the de�ned

stereotypes (e.g., if a stereotype-extended meta
lass is modi�ed).

Examples In all DSML proje
ts, we formalized the language models as meta-

model extensions (O1.3). Additionally, pro�les (O1.2) were employed in P1, P3,

P7, P9, and P10. Therefore, we e�e
tively adopted
ombined strategies (O1.5).

In order to be
ompliant with the OMG spe
i�
ations, we did not
onsider modi-

fying the UML metamodel (O1.4). As an example, Fig. 2 depi
ts an ex
erpt from

a UML extension (taken from P7). On the left hand side, it shows a UML pa
kage

de�nition
alled Se
ureObje
tFlows::Servi
es as an example of a metamodel

extension, on the right hand side, it shows a UML pro�le spe
i�
ation named

SOF::Servi
es. Mappings between these two language-model representations

are provided as M2M transformations. Both UML
ustomizations provide the

same modeling
apabilities for using one of our UML se
urity extensions (for

details see [18,20℄) with the SoaML spe
i�
ation [6℄.

3.2 D2 Language Model Constraints

De
ision Do we have to de�ne
onstraints over the
ore language model(s)? If

so, how should these
onstraints be expressed?

Context A
ore language model has been formalized in the UML, using either a

UML metamodel extension/modi�
ation, a UML pro�le, or a UML
lass model

(see Se
tion 3.1). The resulting language model des
ribes the domain-spe
i�

language in terms of its language elements and their interrelations. The de�nition

308

De
isions for UML and MOF based DSL Models: Lessons Learned 7

<<metamodel>>

SecureObjectFlows::Services

<<metaclass>>

ServiceInterface
(from SoaML::Services)

+ isStrict:Boolean = false

<<metaclass>>

SecureInterface

<<metaclass>>

SecureActivityParameterNode

<<metaclass>>

SecurePin

<<metaclass>>

SecureDataStoreNode

<<profile>>

SOF::Services

<<metaclass>>

Class
(from Kernel)

+ isStrict:Boolean = false

<<stereotype>>

SecureInterface

<<stereotype>>

secure

<<stereotype>>

ServiceInterface
(from SoaML)

Fig. 2. Exemplary UML metamodel extension and pro�le de�nition [20℄.

of these interrelations is limited through the expressiveness of the MOF and

the UML (e.g., part-of relations). A stru
tural UML model, however,
annot

apture
ertain
ategories of
onstraints over domain
on
epts that are relevant

for the des
ription of the target domain. Examples are invariants for domain

on
epts, pre-
onditions and post-
onditions, as well as guards (referred to as

stati

onstraints, hereafter). As a result, the language model formalization
ould

be in
omplete or ambiguous.

If the language model has been realized by
reating multiple formalizations

(e.g., multiple pro�les), there is an additional risk of introdu
ing in
onsisten
ies

provided that the DSML
an be used in di�erent
on�gurations (e.g., di�erent

pro�le
ompositions). Consider, for example, pro�les whi
h provide a bridge

between two UML extensions.

Options

O2.1 Constraint-language expressions : One
an make language model
on-

straints expli
it using a
onstraint-expression language, for instan
e, via the Ob-

je
t Constraint Language (OCL) or via the Epsilon Validation Language (EVL)

in E
lipse.

O2.2 Code annotations : The language model and its elements are enri
hed

through annotations whi
h
ontain expressions in the host language (or a lan-

guage embedded within the host language). For example, this
an be realized by

using model annotations and UML's OpaqueExpression [5℄.

O2.3 Constraining M2T transformations : The
onstraints over the language

model are expressed at the level of transformation templates. That is, template

expressions
ontain
he
ks (e.g.,
onditional statements based on model nav-

igation expressions) whi
h test model instan
es for the impli
it �t with
orre-

sponding domain
onstraints; e.g.,
onditional Epsilon Transformation Language

(ETL) statements based on Epsilon Obje
t Language (EOL) expressions.

O2.4 Textual annotations : Certain
onstraints (e.g., temporal bindings)

eli
ited from the target domain
annot be
aptured su�
iently via evaluable

expressions (i.e.,
onstraint language expressions,
ode annotations) and/or the

onstraints serve a do
umentary purpose (to the domain expert). In su
h
ases,

309

8 De
isions for UML and MOF based DSL Models: Lessons Learned

unstru
tured text annotations may
apture
onstraint des
riptions meant for

the human reader only (e.g., via UML
omments).

O2.5 Combination of options : For instan
e, textual annotations are used as

an addition to
onstraint-language expressions.

O2.6 None: Stati

onstraints over the language model are not made expli
it

in (or along with) the language model.

Drivers

Constraint formalization: In early iterations (e.g., DSML prototyping),
on-

straints might not be expressed via well-formed, synta
ti
ally valid
onstraint-

language expressions, but rather as pseudo-expressions or unstru
tured text.

With the language model maturing during subsequent iterations these annota-

tions
an be transformed into evaluable expressions.

Automated language model
he
king : Depending on whether tool integration

for model
he
king is a requirement, the options O2.1�O2.3 are
andidates. A

driver toward either option is the intended model-
he
king time. Relevant points

in time follow from the model formalization option adopted (e.g.,
lass model

vs. metamodel-based) and the platform-support (model-level or instan
e-level

he
ks). Language-model
he
king based on template expressions (O2.3) real-

izes the latest possible
he
king point. Therefore, this option does not o�er any

onstraint-based feedba
k during model development.

Native language model
onstraints : Constraint-language expressions are de-

veloped with the purpose of integrating (i.e., navigating and
he
king) with the

(meta-)model representations. Examples are standard-
ompliant and vendor-

spe
i�
 OCL expressions for the UML, as well as EVL expressions and Java-

oded
onstraints over se
ondary E
ore representations of UML models (E
lipse

EValidator framework).

Maintainability : Expli
itly stating model
onstraints (O2.1 through O2.3)

reates stru
tured text artifa
ts whi
h must be maintained along with the model

artifa
ts (e.g., the XMI representation). Toolkits and their model representations

o�er di�erent strategies for this purpose, for instan
e, embedding
onstraints into

model elements (i.e., model annotations, su
h as UML
omments), maintaining

onstraint
olle
tions as external resour
es (e.g., separate text �les), or editor

integration. Ea
h strategy a�e
ts the artifa
t
omplexity and the e�ort needed

to keep the
onstraints and the models syn
hronized.

Portability : If the portability of
onstraints between di�erent MDD toolkits

(e.g., E
lipse MDT, Rational Software Ar
hite
t, Magi
Draw, Dresden OCL)

is a mandatory requirement, the platform-dependent options O2.2 and O2.3

an be ex
luded. However, due to the version in
ompatibilities and the di�erent

vendor-spe
i�

onstraint-language diale
ts (e.g., E
lipse MDT OCL), even O2.1

does not guarantee portability for the underspe
i�ed se
tions of the OCL/UML

spe
i�
ations (e.g., navigating stereotypes in model instan
es or for transitive

quanti�ers su
h as
losure [27℄).

Consequen
es (see Fig. 1)

R3 Conforman
e between language model and
onstraints : Constraints on the

language model
an be de�ned separately from the referen
ing metamodel (e.g.,

310

De
isions for UML and MOF based DSL Models: Lessons Learned 9

using
ode annotations; O2.2) or at a later stage (e.g., for M2T transformations;

O2.3). It must be ensured that languagemodel
onstraints do not
ontradi
t their

language model formalization and vi
e versa. Moreover,
onstraints may need to

be adapted when the
orresponding metamodel
hanges (e.g., OCL navigation

expressions).

R4 Constraint in
onsisten
ies : A
ombination of di�erent language model

formalizations (e.g., a UML pro�le and a metamodel extension; O1.5) may re-

quire the dupli
ation and modi�
ation of expli
it
onstraint de�nitions.

R5 Unambiguous language model : If no further
onstraints to the language

model are spe
i�ed, the language model must be fully and unambiguously de-

�ned using the
hosen formalization option and their impli
itly enfor
ed restri
-

tions (e.g., by using pro�les and, thus, inheriting all semanti
s from the UML

metamodel; O1.2).

R6 Impossible
onstraint evaluation: Some
onstraints
annot be
aptured

by the means of
onstraint languages and the underlying language models,
ode

annotations, or model transformation templates (see, e.g., [5℄; O2.1�O2.3). Su
h

onstraints have to be provided as text annotations in a natural language (O2.4).

These
onstraints either have a do
umentation purpose only, or they serve for

porting the
onstraints to another environment as they are not bound to a

on
rete expression form.

Examples In our DSMLs, we en
ountered all options but
ode annotations

(O2.2) and entirely un
onstrained language models (O2.6). So far, we provide

onstraint-language expressions (O2.1) in the OCL for all of our
ases. This is

be
ause pre
ise exe
ution semanti
s were to be expressed in terms of the founda-

tions of UML a
tivities (token �ows, e.g., in P1) and of the UML state ma
hines

(state/transition; in P10). In eight out of ten DSMLs (P2�P9), these semanti
s

are des
ribed by a generi
 and MOF-
ompliant metamodel, as well as
orre-

sponding metamodel extensions. The generi

onstraints were then mapped to a

UML-based language formalization (i.e. the a
tual language model and the re-

spe
tive OCL expressions). Code annotations (O2.2) were not
onsidered be
ause

the additional model
onstraints should not be spe
i�
 to a parti
ular platform

(e.g., model representation APIs, generator language). For two DSMLs (P7, P9),

we additionally in
orporated
onstraining M2T transformations (O2.3). Textual

annotations (O2.4) are either used to
omplement OCL
onstraints (P5, P8,

P10) or as full substitutes (P2) for otherwise formally expressed
onstraints.

Constraint 1 : The operands spe
i�ed in a ContextCondition are either ContextAt-

tributes or ConstantValues.

ontext ContextCondition inv:

self.expression.operand .o
lAsType(OperandType)->forAll(o |

o.o
lIsKindOf(ContextAttribute) or

o.o
lIsKindOf(ConstantValue))

Constraint 5 : The ful�lled

CD

Operations must evaluate to true to ful�ll the
orrespond-

ing ContextCondition.

311

10 De
isions for UML and MOF based DSL Models: Lessons Learned

As an example for these two di�erent purposes,
onsider the above ex
erpt

from P8: For an a
tivity, ea
h a
tion
an be guarded by a
onstraint whose
on-

ditions refer to a set of operands and
he
king operations. At the instan
e-level

(M0), the operations are
alled to evaluate whether an a
tion should be entered,

depending upon some
ontextual state. Constraint 1 shows a
omplementary

textual annotation. Constraint 5 exempli�es a
onstraint expressed in natural

language due to a model-level mismat
h: While the
onstraint is
aptured at the

language-model level (M2), the operation
alls (whose boolean return values are

ombined to yield the runtime evaluation of the guard) be
ome manifest at the

o

urren
e level of an a
tivity instan
e (M0) only.

4 Limitations

The most important limitations of the work presented in this paper are that

1) our lessons learned result only from a
olle
tive experien
e and that 2) the

underlying de
isions were taken by the same group of resear
hers who developed

the ten DSMLs. We reported de
isions being
hara
teristi
 for a single phase

(i.e. de�ning the DSML
ore language model) and their interdependen
ies. Do
-

umenting the remaining phases (see Se
tion 2) is future work. Moreover, there is

the risk of a te
hnology bias given that the ten DSML proje
ts were all performed

in a spe
i�
 te
hnology
ontext (e.g., MOF/UML, OCL, E
lipse modeling tools).

Methodi
ally, this paper presents the results of a narrative synthesis [28℄ of

our DSML development experien
es. Therefore, by emphasizing a presele
ted

pro
ess model and one of its phases [1℄, we may have negle
ted design de
isions

beyond the s
ope of this approa
h. Other risks are the disagreement among the

authors during the synthesis pro
ess and the dependen
e of the synthesis results

on the review performan
e of ea
h author (time
onstraints, level of experien
e).

To mitigate these, we
ondu
ted multiple re�ning iterations over the de
ision

templates and the de
ision relations, under shifting roles of data
he
ker and

data extra
tor.

5 Related Work

Related work on DSL development [1,2,3,4,8,9,10,11,12,13℄ was already outlined

in Se
tion 1. Below, we review the work relevant for our methodi
al approa
h.

For re�e
ting and synthesizing the de
ision-related �ndings from our DSML-

development proje
ts, we adapted the guidelines on
ondu
ting narrative synthe-

ses proposed by [28℄. That is, we sele
ted a pro
ess model and its phases as the

impli
it �theory� underlying our DSML proje
ts. We then
olle
ted meta-data

about the primary works (e.g., parti
ipants, setting, out
omes, target domain,

MDD te
hnologies). Based on the sele
ted �theory� (i.e., phases and develop-

ment artifa
ts), we then
hara
terized the de
isions taken in ea
h development

proje
t. In parti
ular, we adopted previously de�ned de
ision templates.

The pra
ti
e of do
umenting design de
isions in a template-based or model-

based manner has been proposed for ar
hite
tural design de
isions (see, e.g.,

312

De
isions for UML and MOF based DSL Models: Lessons Learned 11

[29℄). In our work, we share the primary motivation of do
umenting reusable

design de
isions, i.e., de
isions and options whi
h are
hara
teristi
 for every

de
ision-making pro
ess in a given te
hni
al domain.

6 Con
luding Remarks

In this paper, we presented lessons learned from ten DSML development proje
ts

in the form of a narrative synthesis. We do
umented MOF/UML-based de
ision

options and relations between them for the phase of de�ning the
ore language

model for a DSML in a stru
tured and reusable form. By doing so, we pro-

vide de
ision support for future de
ision-making pro
esses, fa
ilitate de
ision

do
umentation, and o�er s
a�olding for making de
isions under in
omplete or

hanging requirements (i.e., in early stages of developing or prototyping). Al-

though we espe
ially fo
us on design de
isions for MOF/UML-based DSMLs,

ertain de
ision options do also apply to other modeling languages used in MDD

pro
esses. In our future work, we will do
ument additional de
ision points to

over the remaining phases of the DSML development pro
ess.

Referen
es

1. Strembe
k, M., Zdun, U.: An Approa
h for the Systemati
 Development of

Domain-Spe
i�
 Languages. Software: Pra
ti
e and Experien
e (SP&E) 39(15)

(2009) 1253�1292

2. Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-spe
i�

Languages. ACM Computing Surveys (CSUR) 37(4) (2005) 316�344

3. Zdun, U., Strembe
k, M.: Reusable Ar
hite
tural De
isions for DSL Design: Foun-

dational De
isions in DSL Proje
ts. In: Pro
. of the 14th European Conferen
e on

Pattern Languages of Programs (EuroPLoP). (2009)

4. Spinellis, D.: Notable Design Patterns for Domain-spe
i�
 Languages. Journal of

Systems and Software 56(1) (2001) 91�99

5. Obje
t Management Group: OMG Uni�ed Modeling Language (OMG UML), Su-

perstru
ture � Version 2.4.1. Available at: http://www.omg.org/spe
/UML (2011)

6. Obje
t Management Group: Servi
e oriented ar
hite
ture Modeling Language

(SoaML) � Version 1.0. Available at: http://www.omg.org/spe
/SoaML (2012)

7. Obje
t Management Group: OMG Meta Obje
t Fa
ility (MOF) Core Spe
i�
ation

� Version 2.4.1. Available at: http://www.omg.org/spe
/MOF (2011)

8. Zdun, U.: A DSL Toolkit for Deferring Ar
hite
tural De
isions in DSL-based

Software Design. Information and Software Te
hnology 52(9) (2010) 733�748

9. Wile, D.: Lessons Learned from Real DSL Experiments. S
ien
e of Computer

Programming 51(3) (2003) 265�290

10. Kelly, S., Pohjonen, R.: Worst Pra
ti
es for Domain-Spe
i�
 Modeling. IEEE

Software 26(4) (2009) 22�29

11. Karsai, G., Krahn, H., Pinkernell, C. et al.: Design Guidelines for Domain Spe
i�

Languages. In: Pro
. of the 9th OOPSLA Workshop on Domain-Spe
i�
 Modeling

(DSM). (2009)

12. Seli
, B.: A Systemati
 Approa
h to Domain-Spe
i�
 Language Design Using

UML. In: Pro
. of the IEEE International Symposium on Obje
t-Oriented Real-

Time Distributed Computing (ISORC), IEEE (2007)

313

12 De
isions for UML and MOF based DSL Models: Lessons Learned

13. Robert, S., Gérard, S., Terrier, F. et al.: A Lightweight Approa
h for Domain-

Spe
i�
 Modeling Languages Design. In: Pro
. of the 35th Euromi
ro Conferen
e

on Software Engineering and Advan
ed Appli
ations, IEEE (2009)

14. Strembe
k, M., Zdun, U.: Modeling Interdependent Con
ern Behavior using Ex-

tended A
tivity Models. Journal of Obje
t Te
hnology 7(6) (2008) 143�166

15. Strembe
k, M., Mendling, J.: Modeling Pro
ess-related RBAC Models with Ex-

tended UML A
tivity Models. Information and Software Te
hnology 53(5) (2010)

16. S
hefer, S., Strembe
k, M.: Modeling Pro
ess-Related Duties with Extended UML

A
tivity and Intera
tion Diagrams. In: Pro
. of the International Workshop on

Flexible Work�ows in Distributed Systems. (2011)

17. S
hefer, S., Strembe
k, M.: Modeling Support for Delegating Roles, Tasks, and Du-

ties in a Pro
ess-Related RBAC Context. In: Pro
. of the International Workshop

on Information Systems Se
urity Engineering (WISSE), Springer, LNBIP (2011)

18. Hoisl, B., Strembe
k, M.: Modeling Support for Con�dentiality and Integrity of

Obje
t Flows in A
tivity Models. In: Pro
. of the 14th International Conferen
e

on Business Information Systems (BIS), Springer, LNBIP (2011)

19. S
hefer, S.: Consisten
y Che
ks for Duties in Extended UML2 A
tivity Models.

In: Pro
. of the International Workshop on Se
urity Aspe
ts of Pro
ess-aware In-

formation Systems (SAPAIS), IEEE (2011)

20. Hoisl, B., Sobernig, S.: Integrity and Con�dentiality Annotations for Servi
e In-

terfa
es in SoaML Models. In: Pro
. of the International Workshop on Se
urity

Aspe
ts of Pro
ess-aware Information Systems (SAPAIS), IEEE (2011)

21. S
hefer-Wenzl, S., Strembe
k, M.: Modeling Context-Aware RBAC Models for

Business Pro
esses in Ubiquitous Computing Environments. In: Pro
. of the 3rd

International Conferen
e on Mobile, Ubiquitous and Intelligent Computing. (2012)

22. Hoisl, B., Strembe
k, M.: A UML Extension for the Model-driven Spe
i�
ation of

Audit Rules. In: Pro
. of the 2nd International Workshop on Information Systems

Se
urity Engineering (WISSE'12), Springer, LNBIP (2012)

23. Zdun, U., Strembe
k, M.: Modeling Composition in Dynami
 Programming Envi-

ronments with Model Transformations. In: Pro
. of the 5th International Sympo-

sium on Software Composition, LNCS, Vol. 4089, Springer (2006)

24. Evans, E.: Domain-driven Design: Ta
kling Complexity in the Heart of Software.

Addison-Wesley (2004)

25. Mens, T., Gorp, P.v.: A Taxonomy of Model Transformation. Ele
troni
 Notes in

Theoreti
al Computer S
ien
e 152 (2006) 125�142

26. Bru
k, J., Hussey, K.: Customizing UML: Whi
h Te
hnique is Right for You?

Available at: http://www.e
lipse.org/modeling/mdt/uml2/do
s/arti
les/

Customizing_UML2_Whi
h_Te
hnique_is_Right_For_You/arti
le.html (2008)

27. Obje
t Management Group: OMG Obje
t Constraint Language (OCL) � Version

2.3.1. Available at: http://www.omg.org/spe
/OCL (2012)

28. Cruzes, D., Dybå, T.: Synthesizing Eviden
e in Software Engineering Resear
h.

In: Pro
. of the International Symposium on Empiri
al Software Engineering and

Measurement (ESEM). ACM (2010)

29. Obbink, H., Kru
hten, P., Koza
zynski, W. et al.: Software Ar
hite
ture Review

and Assessment (SARA) Report, Version 1.0. Available at: http://kru
hten.
om/

philippe/ar
hite
ture/SARAv1.pdf (2002)

314

