303

Design Decisions for UML and MOF based
Domain-specific Language Models: Some Lessons
Learned”

Bernhard Hoisl!*2, Stefan Sobernig!, Sigrid Schefer-Wenzl'?, Mark
Strembeck!2, and Anne Baumgrass'»?

! Institute for Information Systems, New Media Lab,
Vienna University of Economics and Business (WU Vienna)
2 Secure Business Austria Research (SBA Research)
{firstname.lastname}@wu.ac.at

Abstract. Inrecent years, the development of domain-specific modeling
languages (DSMLs) that are based on the MOF and/or UML has become
a popular option in the model-driven development context. As a result,
the model-driven software engineering community collected many design
and implementation experiences. However, most research contributions
on this topic do not aim at supporting the DSML development process as
a repetitive decision-making process. In this paper, we document some of
our experiences gathered from developing ten MOF/UML-based DSMLs
and present our experiences in a reusable manner via decision templates.
In particular, this paper focuses on design decisions for the initial phase
of the DSML development process, i.e. the definition of the DSML’s core
language model.

Keywords: Domain-specific modeling, Domain-specific languages, De-
sign decisions, UML, Model-driven development

1 Introduction

In model-driven development (MDD), a domain-specific modeling language
(DSML) is a specialized modeling language tailored for a particular application
domain (e.g., access control, backup policies, or system auditing) (see, e.g.,
[1,2,3,4]). Thus, a DSML’s abstraction level, its expressiveness, and concrete
syntax are customized for software developers and for experts in the DSML’s
application domain. Often DSMLs are developed based on the Unified Model-
ing Language (UML) [5]. The UML can leverage industry-grade tool support,
scientific evaluations of its semantic foundations, and standardized modeling
extensions (e.g., SoaML for service-oriented systems [6]). The UML benefits

*This work has partly been funded by the Austrian Research Promotion Agency
(FFG) of the Austrian Federal Ministry for Transport, Innovation and Technology
(BMVIT) through the Competence Centers for Excellent Technologies (COMET K1)
initiative and the FIT-IT program.

304
2 Decisions for UML and MOF based DSL Models: Lessons Learned

from its organizational maintenance through the Object Management Group
(OMG) and builds upon a standardized metamodel: the Meta Object Facility
(MOF) [7]. With this, the MOF and the UML provide a rich DSML development
toolkit.

In recent years, a number of contributions discussed the development of
domain-specific languages (DSLs). Examples include empirical research evidence
(e.g., case study research [8,9,10]), DSL development processes [1], develop-
ment guidelines and patterns [2,3,4,11], or selected facets of UML-based DSMLs
[12,13]. Despite the availability of such sources of design knowledge, most contri-
butions fall short in one or several respects: Many experiences lack empirically
gathered evidence (e.g., an explicitly documented research design). Many are
not specifically tailored toward DSMLs in general, or MOF /UML-based DSMLs
in particular, but rather toward textual DSLs. Others reflect design knowledge
which is specific to a particular toolkit (e.g., the Eclipse Modeling Framework,
EMF). Our work complements the experiences mentioned above by providing
reusable design knowledge for designing the core language model of MOF /UML-
based DSMLs; i.e. specific options, consequences, and dependencies of decisions
in this particular phase of DSML development.

The purpose of this paper is to present our experiences, lessons learned, and
some of the challenges we faced while developing ten MOF /UML-based DSMLs
over the last years. For an overview of these projects see Table 1 (P1-P10). From
these experiences, we extracted two decision points with corresponding decision
options for the initial DSML development phase of constructing the core language
model. The core language model captures all relevant domain abstractions and
specifies the relations between these abstractions. Accordingly, we defined a core
language model for each of our DSMLs. We document the design decisions in
a reusable manner by adopting decision templates inspired by related work on
documenting architectural design decisions (see, e.g., [3]). The basic phases of
DSML development are adopted from [1].

The remainder of the paper is structured as follows: In Section 2, we intro-
duce the process model of DSML development according to [1]. In Section 3, we
describe the relations between the decisions and the respective decision options
in a structured manner. Limitations of our contribution are discussed in Section
4. Section 5 provides an overview of related work and Section 6 concludes the

paper.

2 Background: DSML Development Phases

Before we outline the lessons learned from our DSML projects (see Table 1), we
give an overview of the DSML development process applied in our projects (for
a detailed discussion see [1]). The following steps were performed iteratively to
build the DSMLs:

Define DSML core language model One first defines an initial core lan-
guage model and the corresponding language model constraints for the target
domain. By following a domain analysis method, such as domain-driven design

305

Decisions for UML and MOF based DSL Models: Lessons Learned

Objectives Domain

An approach to model interdependent concern behavior using .
Pl extended UML activity models [14]. Separation of concerns

An integrated approach for modeling processes and process- Business processes, role-
P2 related RBAC models (roles, hierarchies, statically and dynam- based access control

ically mutual exclusive tasks etc.) [15]. (RBAC)

A UML extension for an integrated modeling of business pro- Busi

4 X . usiness processes,

P3 cesses and process-related duties; particularly the modeling of rocess-related duties

duties and associated tasks in business process models [16]. proc

An approach to provide modeling support for the delegation of Business processes, delega-
P4 roles, tasks, and duties in the context of process-related RBAC tion of roles, tasks, and du-

models [17]. ties

A UML extension to model confidentiality and integrity of ob- Data confidentiality and
P5

ject flows in activity models [18]. integrity

UML modeling support for the notion of mutual exclusion and .
P6 binding constraints for duties in process-related RBAC models RBAC (consistency checks

[19]. for duties)

Incorporation of data integrity and confidentiality into the
P7 model-driven development of process-driven service-oriented ar-

chitectures [20].

Integration of context constraints with process-related RBAC
P8 models and thereby supporting context-dependent task execu-
tion [21].
A generic UML extension for the definition of audit requirements

Integrity and confidential-
ity for service invocations

Business processes, RBAC,
context constraints

P9 and specification of audit rules at the modeling-level [22]. Audit rules
An approach based on model transformations between the valid
P10 structural and behavioral runtime states that a system can have Model transformation

[23].

Table 1. Overview of conducted DSML development projects.

(see, e.g., [24]), domain abstractions are identified and form the language model
of a DSML. Because the language model often cannot capture all restrictions
and/or semantic properties of the DSML elements, language model constraints
are added, if necessary. This phase results in the DSML core language model and
a catalog of DSML language model constraints.

Define DSML concrete syntax In this phase, graphical or textual notation
symbols as well as composition and production rules are defined. The DSML
core language model and the DSML language model constraints serve as input
to produce the DSML concrete syntax specification.

Define DSML behavior The behavior specification of a DSML determines
how the DSML elements interact to produce the behavior intended by the DSML
designer. Syntax and behavior of a DSML are usually defined in parallel. The
DSML behavior specification (e.g., control flow models, formal textual specifica-
tions) is the output of this phase.

DSML platform integration All artifacts defined for a DSML are mapped
to the features of a selected platform, either by extending an existing platform
or by developing a new tool set. Platform integration is achieved by defining
model transformations (see, e.g., [25]) to convert a model into another platform-
specific model (model-to-model transformation, M2M) or into machine-readable
software artifacts (model-to-text transformation, M2T).

306
4 Decisions for UML and MOF based DSL Models: Lessons Learned

Decision/Option Pl P2 P3 P4 P5 P6 P7 P8 P9 P10

D1 Language model formalization
O1.1 M1 class model

0O1.2 Profile definition X X X X X
0O1.3 Metamodel extension X X X X X X X X X X
0O1.4 Metamodel modification

01.5 Combination of options® C C = C C
D2 Language model constraints

0O2.1 Explicit constraint expressions X X X X X X X X X X
02.2 Code annotations

02.3 Constraining M2T transformations X X
02.4 Textual annotations X X X X
02.5 Combination of options! = C < C C C
0O2.6 None

Table 2. Overview of design decision points and options.

3 Collected Decisions on the Core Language Model

Most of our DSMLs (see Table 1) provide modeling support for different types of
security aspects in a business process context. P10 [23] is an exception and aims
at describing program transformations in dynamic programming environments.
Each of the ten DSML projects adopted the development process sketched in
Section 2. However, due to differing requirements, we did not always perform all
DSML development phases. For example, we do not provide platform integration
for P10. Thus, to document our experiences from the ten projects, we focus on
a single phase and on two specific decisions that appeared in each of the ten
projects. In particular, this paper reports on the core language model definition
and on the respective design decisions.

For each case presented in Table 1, we identified different decision options.
The development of a DSML core language model requires two important deci-
sions: DSML language model formalization (Section 3.1) and defining language
model constraints (Section 3.2). Table 2 summarizes these options for both de-
sign decision points and lists the options adopted for each of the ten cases. Fig.
1 depicts an overview of the two decisions, the corresponding options, as well as
the interdependencies between the decisions and their options. These relations
are then discussed for each decision in the respective Consequences sub-section
(see below).

3.1 D1 Language Model Formalization

Decision In which way should the domain concepts be formalized?

Context Domain abstractions are identified and form the language model of
a DSML (i.e., the abstract syntax). This language model definition can be ex-
pressed, for instance, in a narrative text form, with mathematical expressions
(e.g., set algebra), or via a modeling language (e.g., the UML). The language
model definition serves as input for the phase of formalizing the domain con-
structs into the core language model expressed via the UML.

1< options complementary; < options equivalent

307
Decisions for UML and MOF based DSL Models: Lessons Learned

—--T A

P
o 02.1 Explicit
Ol.1 Class NN N - constraints
model & -
Pres 02.2 Code
DI 01.2 Profile 7
finiti ‘
Language model definition {

el &y
s ~
N
~
formalization ’ ,
'
!
1
'
/
/
’
’
,
.
.

. i
annotations 1
'
i

\
[

1
1

II\ N ~ !
1 s Y I’
1 AN ’
R2! AN v Rf’z ‘
' ‘~ - D2
02.4 Textual Language model

01.4 MM annotations constraints
modification

g 02.5 Combi-
nation

1
01.5 Combi- _
nation >
i el RS o eememee

Fig. 1. Relations (R1-R6) between decision options.

Options For UML-based DSMLs, the language model can be defined within the
boundaries of the modeling language via dedicated language extension constructs
(such as UML profiles) or by extending the modeling language to provide the
required semantics (see, e.g., [5,26]).

01.1 M1 class model: UML class models are an ad-hoc instrument to for-
malize domain abstractions. Domain concepts can be expressed as classes and
relationships as associations.

01.2 Profile definition: Profiles are a language extension option to tailor the
UML for different purposes. A profile consists of a set of stereotypes which define
how an existing UML metaclass may be extended.

01.3 Metamodel extension: A metamodel extension introduces, for instance,
new metaclasses and/or new associations between metaclasses (MOF-based ex-
tension [7]).

01.4 Metamodel modification: In contrast to a metamodel extension, existing
metaclasses of the UML metamodel are modified; e.g., by changing the type of
a class property or by deleting existing associations (MOF-based extension [7]).

01.5 Combination of options: A combination may include the definition of a
metamodel extension as well as an equivalent profile definition (e.g., P7). Simi-
larly, stereotype definitions can be provided to accompany a metamodel modifi-
cation (e.g., P9).

Drivers

Domain space: The degree of overlap between the domain space of the DSML
concepts and the general purpose language constructs (i.e., the UML specifica-
tion) has a direct impact on whether a profile definition is sufficient or on whether
a metamodel extension/modification is needed (01.2-01.4). In general, a UML
extension is reusable if it is compliant with the UML standard.

DSML expressiveness: For instance, a UML profile (01.2) can only specialize
the UML metamodel in such a way that the profile semantics do not conflict with
the semantics of the referenced metamodel. Therefore, profile constraints may

308
6 Decisions for UML and MOF based DSL Models: Lessons Learned

only define well-formed rules that are more constraining (but consistent with)
those specified by the metamodel [5]. In contrast, a metamodel extension/modi-
fication (01.3 and 01.4) is only limited by the constraints imposed by the MOF
metamodel.

Portability and evolution: A metamodel extension/modification (O1.3 and
01.4) creates a fork of a certain version of the UML specification. The metamodel
does not inherit revisions coming from newly released OMG specifications and
can deviate from the UML or MOF standard.

DSML integration: Available DSMLs, software systems, and tool support
have a direct impact on the design process of a DSML in terms of integration
possibilities. For instance, the UML specification defines a standardized way to
use icons and display options for profiles (01.2). Tool support for authoring
UML class models and profiles (01.1 and 01.2) is widely available.
Consequences (see Fig. 1)

R1 Constraint limitations for class models: A class model defines a language
model at the UML instance level (i.e. at the M1 level, see [7]). This means,
no metamodel is defined to reflect the domain space and, thus, domain concepts
can neither be instantiated nor explicitly constrained for their usage as modeling
constructs. Thus, restrictions can only be defined in terms of text annotations
attached to the language model.

R2 Profile dependency: Dependencies can occur from combined language

model formalizations. For instance, profiles are dependent on the UML meta-
model. If a profile is combined with a metamodel modification, changes to the
metamodel can lead to implicit and unwanted changes affecting the defined
stereotypes (e.g., if a stereotype-extended metaclass is modified).
Examples In all DSML projects, we formalized the language models as meta-
model extensions (01.3). Additionally, profiles (01.2) were employed in P1, P3,
P7, P9, and P10. Therefore, we effectively adopted combined strategies (O1.5).
In order to be compliant with the OMG specifications, we did not consider modi-
fying the UML metamodel (O1.4). As an example, Fig. 2 depicts an excerpt from
a UML extension (taken from P7). On the left hand side, it shows a UML package
definition called SecureObjectFlows: :Services as an example of a metamodel
extension, on the right hand side, it shows a UML profile specification named
SOF: :Services. Mappings between these two language-model representations
are provided as M2M transformations. Both UML customizations provide the
same modeling capabilities for using one of our UML security extensions (for
details see [18,20]) with the SoaML specification [6].

3.2 D2 Language Model Constraints

Decision Do we have to define constraints over the core language model(s)? If
s0, how should these constraints be expressed?

Context A core language model has been formalized in the UML, using either a
UML metamodel extension/modification, a UML profile, or a UML class model
(see Section 3.1). The resulting language model describes the domain-specific
language in terms of its language elements and their interrelations. The definition

309
Decisions for UML and MOF based DSL Models: Lessons Learned

<<metaclass>> <<metaclass>>
Servicelnterface Class
(from SoaML::Services) (from Kernel)
A
A <<stereotype>>
Servicelnterface
<<metamodel>> (from SoaML)
SecureObjectFlows::Services
<<metaclass>> -
Securelnterface Sogégf"e%
+ isStrict:Boolean = false sServices
<<metaclass>> <<stereotype>>
SecureDataStoreNode _____Securelnterface
<<metaclass>> + isStrict:Boolean = false
SecurePin
<<metaclass>> <<stereotype>>
SecureActivityParameterNode secure

Fig. 2. Exemplary UML metamodel extension and profile definition [20].

of these interrelations is limited through the expressiveness of the MOF and
the UML (e.g., part-of relations). A structural UML model, however, cannot
capture certain categories of constraints over domain concepts that are relevant
for the description of the target domain. Examples are invariants for domain
concepts, pre-conditions and post-conditions, as well as guards (referred to as
static constraints, hereafter). As a result, the language model formalization could
be incomplete or ambiguous.

If the language model has been realized by creating multiple formalizations
(e.g., multiple profiles), there is an additional risk of introducing inconsistencies
provided that the DSML can be used in different configurations (e.g., different
profile compositions). Consider, for example, profiles which provide a bridge
between two UML extensions.

Options

02.1 Constraint-language expressions: One can make language model con-
straints explicit using a constraint-expression language, for instance, via the Ob-
ject Constraint Language (OCL) or via the Epsilon Validation Language (EVL)
in Eclipse.

02.2 Code annotations: The language model and its elements are enriched
through annotations which contain expressions in the host language (or a lan-
guage embedded within the host language). For example, this can be realized by
using model annotations and UML’s OpaqueExpression [5].

02.3 Constraining M2T transformations: The constraints over the language
model are expressed at the level of transformation templates. That is, template
expressions contain checks (e.g., conditional statements based on model nav-
igation expressions) which test model instances for the implicit fit with corre-
sponding domain constraints; e.g., conditional Epsilon Transformation Language
(ETL) statements based on Epsilon Object Language (EOL) expressions.

02.4 Textual annotations: Certain constraints (e.g., temporal bindings)
elicited from the target domain cannot be captured sufficiently via evaluable
expressions (i.e., constraint language expressions, code annotations) and/or the
constraints serve a documentary purpose (to the domain expert). In such cases,

310
8 Decisions for UML and MOF based DSL Models: Lessons Learned

unstructured text annotations may capture constraint descriptions meant for
the human reader only (e.g., via UML comments).

02.5 Combination of options: For instance, textual annotations are used as
an addition to constraint-language expressions.

02.6 None: Static constraints over the language model are not made explicit
in (or along with) the language model.

Drivers

Constraint formalization: In early iterations (e.g., DSML prototyping), con-
straints might not be expressed via well-formed, syntactically valid constraint-
language expressions, but rather as pseudo-expressions or unstructured text.
With the language model maturing during subsequent iterations these annota-
tions can be transformed into evaluable expressions.

Automated language model checking: Depending on whether tool integration
for model checking is a requirement, the options 02.1-02.3 are candidates. A
driver toward either option is the intended model-checking time. Relevant points
in time follow from the model formalization option adopted (e.g., class model
vs. metamodel-based) and the platform-support (model-level or instance-level
checks). Language-model checking based on template expressions (02.3) real-
izes the latest possible checking point. Therefore, this option does not offer any
constraint-based feedback during model development.

Native language model constraints: Constraint-language expressions are de-
veloped with the purpose of integrating (i.e., navigating and checking) with the
(meta-)model representations. Examples are standard-compliant and vendor-
specific OCL expressions for the UML, as well as EVL expressions and Java-
coded constraints over secondary Ecore representations of UML models (Eclipse
EValidator framework).

Maintainability: Explicitly stating model constraints (O2.1 through 02.3)
creates structured text artifacts which must be maintained along with the model
artifacts (e.g., the XMI representation). Toolkits and their model representations
offer different strategies for this purpose, for instance, embedding constraints into
model elements (i.e., model annotations, such as UML comments), maintaining
constraint collections as external resources (e.g., separate text files), or editor
integration. Each strategy affects the artifact complexity and the effort needed
to keep the constraints and the models synchronized.

Portability: If the portability of constraints between different MDD toolkits
(e.g., Eclipse MDT, Rational Software Architect, MagicDraw, Dresden OCL)
is a mandatory requirement, the platform-dependent options 02.2 and 02.3
can be excluded. However, due to the version incompatibilities and the different
vendor-specific constraint-language dialects (e.g., Eclipse MDT OCL), even 02.1
does not guarantee portability for the underspecified sections of the OCL/UML
specifications (e.g., navigating stereotypes in model instances or for transitive
quantifiers such as closure [27]).

Consequences (see Fig. 1)

R3 Conformance between language model and constraints: Constraints on the

language model can be defined separately from the referencing metamodel (e.g.,

311
Decisions for UML and MOF based DSL Models: Lessons Learned

using code annotations; 02.2) or at a later stage (e.g., for M2T transformations;
02.3). It must be ensured that language model constraints do not contradict their
language model formalization and vice versa. Moreover, constraints may need to
be adapted when the corresponding metamodel changes (e.g., OCL navigation
expressions).

R4 Constraint inconsistencies: A combination of different language model
formalizations (e.g., a UML profile and a metamodel extension; O1.5) may re-
quire the duplication and modification of explicit constraint definitions.

R5 Unambiguous language model: If no further constraints to the language
model are specified, the language model must be fully and unambiguously de-
fined using the chosen formalization option and their implicitly enforced restric-
tions (e.g., by using profiles and, thus, inheriting all semantics from the UML
metamodel; 01.2).

R6 Impossible constraint evaluation: Some constraints cannot be captured
by the means of constraint languages and the underlying language models, code
annotations, or model transformation templates (see, e.g., [5]; 02.1-02.3). Such
constraints have to be provided as text annotations in a natural language (02.4).
These constraints either have a documentation purpose only, or they serve for
porting the constraints to another environment as they are not bound to a
concrete expression form.

Examples In our DSMLs, we encountered all options but code annotations
(02.2) and entirely unconstrained language models (02.6). So far, we provide
constraint-language expressions (02.1) in the OCL for all of our cases. This is
because precise execution semantics were to be expressed in terms of the founda-
tions of UML activities (token flows, e.g., in P1) and of the UML state machines
(state/transition; in P10). In eight out of ten DSMLs (P2-P9), these semantics
are described by a generic and MOF-compliant metamodel, as well as corre-
sponding metamodel extensions. The generic constraints were then mapped to a
UML-based language formalization (i.e. the actual language model and the re-
spective OCL expressions). Code annotations (02.2) were not considered because
the additional model constraints should not be specific to a particular platform
(e.g., model representation APIs, generator language). For two DSMLs (P7, P9),
we additionally incorporated constraining M2T transformations (02.3). Textual
annotations (02.4) are either used to complement OCL constraints (P5, P8,
P10) or as full substitutes (P2) for otherwise formally expressed constraints.

Constraint 1: The operands specified in a ContextCondition are either ContextAt-
tributes or ConstantValues.

context ContextCondition inv:
self.expression.operand.oclAsType(0OperandType)->forAll (o |
0.0clIsKind0Of(ContextAttribute) or
o.0clIsKindOf(ConstantValue))

Constraint 5: The fulfilledcp Operations must evaluate to true to fulfill the correspond-
ing ContextCondition.

312
10 Decisions for UML and MOF based DSL Models: Lessons Learned

As an example for these two different purposes, consider the above excerpt
from P8: For an activity, each action can be guarded by a constraint whose con-
ditions refer to a set of operands and checking operations. At the instance-level
(MO), the operations are called to evaluate whether an action should be entered,
depending upon some contextual state. Constraint 1 shows a complementary
textual annotation. Constraint 5 exemplifies a constraint expressed in natural
language due to a model-level mismatch: While the constraint is captured at the
language-model level (M2), the operation calls (whose boolean return values are
combined to yield the runtime evaluation of the guard) become manifest at the
occurrence level of an activity instance (MO) only.

4 Limitations

The most important limitations of the work presented in this paper are that
1) our lessons learned result only from a collective experience and that 2) the
underlying decisions were taken by the same group of researchers who developed
the ten DSMLs. We reported decisions being characteristic for a single phase
(i.e. defining the DSML core language model) and their interdependencies. Doc-
umenting the remaining phases (see Section 2) is future work. Moreover, there is
the risk of a technology bias given that the ten DSML projects were all performed
in a specific technology context (e.g., MOF/UML, OCL, Eclipse modeling tools).

Methodically, this paper presents the results of a narrative synthesis [28] of
our DSML development experiences. Therefore, by emphasizing a preselected
process model and one of its phases [1], we may have neglected design decisions
beyond the scope of this approach. Other risks are the disagreement among the
authors during the synthesis process and the dependence of the synthesis results
on the review performance of each author (time constraints, level of experience).
To mitigate these, we conducted multiple refining iterations over the decision
templates and the decision relations, under shifting roles of data checker and
data extractor.

5 Related Work

Related work on DSL development [1,2,3,4,8,9,10,11,12,13] was already outlined
in Section 1. Below, we review the work relevant for our methodical approach.

For reflecting and synthesizing the decision-related findings from our DSML-
development projects, we adapted the guidelines on conducting narrative synthe-
ses proposed by [28]. That is, we selected a process model and its phases as the
implicit “theory” underlying our DSML projects. We then collected meta-data
about the primary works (e.g., participants, setting, outcomes, target domain,
MDD techunologies). Based on the selected “theory” (i.e., phases and develop-
ment artifacts), we then characterized the decisions taken in each development
project. In particular, we adopted previously defined decision templates.

The practice of documenting design decisions in a template-based or model-
based manner has been proposed for architectural design decisions (see, e.g.,

313
Decisions for UML and MOF based DSL Models: Lessons Learned

[29]). In our work, we share the primary motivation of documenting reusable
design decisions, i.e., decisions and options which are characteristic for every
decision-making process in a given technical domain.

6 Concluding Remarks

In this paper, we presented lessons learned from ten DSML development projects
in the form of a narrative synthesis. We documented MOF /UML-based decision
options and relations between them for the phase of defining the core language
model for a DSML in a structured and reusable form. By doing so, we pro-
vide decision support for future decision-making processes, facilitate decision
documentation, and offer scaffolding for making decisions under incomplete or
changing requirements (i.e., in early stages of developing or prototyping). Al-
though we especially focus on design decisions for MOF/UML-based DSMLs,
certain decision options do also apply to other modeling languages used in MDD
processes. In our future work, we will document additional decision points to
cover the remaining phases of the DSML development process.

References

1. Strembeck, M., Zdun, U.: An Approach for the Systematic Development of
Domain-Specific Languages. Software: Practice and Experience (SP&E) 39(15)
(2009) 1253-1292

2. Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-specific
Languages. ACM Computing Surveys (CSUR) 37(4) (2005) 316-344

3. Zdun, U., Strembeck, M.: Reusable Architectural Decisions for DSL Design: Foun-
dational Decisions in DSL Projects. In: Proc. of the 14th European Conference on
Pattern Languages of Programs (EuroPLoP). (2009)

4. Spinellis, D.: Notable Design Patterns for Domain-specific Languages. Journal of
Systems and Software 56(1) (2001) 91-99

5. Object Management Group: OMG Unified Modeling Language (OMG UML), Su-
perstructure — Version 2.4.1. Available at: http://www.omg.org/spec/UML (2011)

6. Object Management Group: Service oriented architecture Modeling Language
(SoaML) — Version 1.0. Available at: http://www.omg.org/spec/SoaML (2012)

7. Object Management Group: OMG Meta Object Facility (MOF) Core Specification
— Version 2.4.1. Available at: http://www.omg.org/spec/MOF (2011)

8. Zdun, U.: A DSL Toolkit for Deferring Architectural Decisions in DSL-based
Software Design. Information and Software Technology 52(9) (2010) 733-748

9. Wile, D.: Lessons Learned from Real DSL Experiments. Science of Computer
Programming 51(3) (2003) 265-290

10. Kelly, S., Pohjonen, R.: Worst Practices for Domain-Specific Modeling. IEEE
Software 26(4) (2009) 22-29

11. Karsai, G., Krahn, H., Pinkernell, C. et al.: Design Guidelines for Domain Specific
Languages. In: Proc. of the 9th OOPSLA Workshop on Domain-Specific Modeling
(DSM). (2009)

12. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using
UML. In: Proc. of the IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC), IEEE (2007)

11

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

314

Decisions for UML and MOF based DSL Models: Lessons Learned

Robert, S., Gérard, S., Terrier, F. et al.: A Lightweight Approach for Domain-
Specific Modeling Languages Design. In: Proc. of the 35th Euromicro Conference
on Software Engineering and Advanced Applications, IEEE (2009)

Strembeck, M., Zdun, U.: Modeling Interdependent Concern Behavior using Ex-
tended Activity Models. Journal of Object Technology 7(6) (2008) 143-166
Strembeck, M., Mendling, J.: Modeling Process-related RBAC Models with Ex-
tended UML Activity Models. Information and Software Technology 53(5) (2010)
Schefer, S., Strembeck, M.: Modeling Process-Related Duties with Extended UML
Activity and Interaction Diagrams. In: Proc. of the International Workshop on
Flexible Workflows in Distributed Systems. (2011)

Schefer, S., Strembeck, M.: Modeling Support for Delegating Roles, Tasks, and Du-
ties in a Process-Related RBAC Context. In: Proc. of the International Workshop
on Information Systems Security Engineering (WISSE), Springer, LNBIP (2011)
Hoisl, B., Strembeck, M.: Modeling Support for Confidentiality and Integrity of
Object Flows in Activity Models. In: Proc. of the 14th International Conference
on Business Information Systems (BIS), Springer, LNBIP (2011)

Schefer, S.: Consistency Checks for Duties in Extended UML2 Activity Models.
In: Proc. of the International Workshop on Security Aspects of Process-aware In-
formation Systems (SAPAIS), IEEE (2011)

Hoisl, B., Sobernig, S.: Integrity and Confidentiality Annotations for Service In-
terfaces in SoaML Models. In: Proc. of the International Workshop on Security
Aspects of Process-aware Information Systems (SAPAIS), IEEE (2011)
Schefer-Wenzl, S., Strembeck, M.: Modeling Context-Aware RBAC Models for
Business Processes in Ubiquitous Computing Environments. In: Proc. of the 3rd
International Conference on Mobile, Ubiquitous and Intelligent Computing. (2012)
Hoisl, B., Strembeck, M.: A UML Extension for the Model-driven Specification of
Audit Rules. In: Proc. of the 2nd International Workshop on Information Systems
Security Engineering (WISSE’12), Springer, LNBIP (2012)

Zdun, U., Strembeck, M.: Modeling Composition in Dynamic Programming Envi-
ronments with Model Transformations. In: Proc. of the 5th International Sympo-
sium on Software Composition, LNCS, Vol. 4089, Springer (2006)

Evans, E.: Domain-driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2004)

Mens, T., Gorp, P.v.: A Taxonomy of Model Transformation. Electronic Notes in
Theoretical Computer Science 152 (2006) 125-142

Bruck, J., Hussey, K.: Customizing UML: Which Technique is Right for You?
Available at: http://www.eclipse.org/modeling/mdt/uml2/docs/articles/
Customizing UML2_Which_Technique_is_Right_For_You/article.html (2008)
Object Management Group: OMG Object Constraint Language (OCL) — Version
2.3.1. Available at: http://www.omg.org/spec/0CL (2012)

Cruzes, D., Dyba, T.: Synthesizing Evidence in Software Engineering Research.
In: Proc. of the International Symposium on Empirical Software Engineering and
Measurement (ESEM). ACM (2010)

Obbink, H., Kruchten, P., Kozaczynski, W. et al.: Software Architecture Review
and Assessment (SARA) Report, Version 1.0. Available at: http://kruchten. com/
philippe/architecture/SARAv1.pdf (2002)

