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Summary. While the demand for an integrated modeling support of
business processes and corresponding security properties has been repeat-
edly identified in research and practice, standard modeling languages do
not provide native language constructs to model process-related security
properties. In this paper, we are especially concerned with confidentiality
and integrity of object flows. In particular, we present an UML exten-
sion called SecureObjectFlows to model confidentiality and integrity of
object flows in activity models. Moreover, we discuss the semantics of
secure object flows with respect to different types of control nodes and
provide a formal definition of the corresponding semantics via the Object
Constraint Language (OCL).
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1 Introduction

Business processes define an organization’s operational procedures and are per-
formed to reach operational goals. Therefore, business processes play a central
role in many commercial software systems and are of considerable interest to
the research communities in software engineering as well as information and
system security. In particular, IT systems must comply with certain laws and
regulations, such as the Basel IT Accord, the International Financial Reporting
Standards (IFRS), or the Sarbanes-Oxley Act (SOX). For example, adequate
support for the definition and enforcement of process-related security policies
is one important part of SOX compliance (see, e.g., [1} 2]). Furthermore, corre-
sponding compliance requirements also arise from security recommendations and
standards such as the NIST security handbook [3], the NIST recommended secu-
rity controls [4], or the ISO 27000 standard family (formerly ISO 17799). More-
over, legally binding agreements such as business contracts, or company-specific
(internal) rules and regulations do also have a direct impact on corresponding
information systems.

While the demand for an integrated modeling support of business processes
and corresponding security properties has been repeatedly identified (see, e.g.,
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2 Modeling Support for Confidentiality and Integrity of Object Flows

[5, 16]), different types of problems arise when modeling process-related security
properties. First, contemporary modeling languages such as BPMN (Business
Process Model and Notation, [7]) or UML activity models (Unified Modeling
Language, [8]) do not provide native language constructs to model secure ob-
ject flows. A second problem is that the language used for process modeling
is often different from (or not integrated with) the system modeling language
that is used to specify the corresponding software system. This, again, may
result in problems because different modeling languages provide different lan-
guage abstractions that cannot easily be mapped to each other. In particular,
such semantic gaps may involve significant efforts when conceptual models from
different languages need to be integrated and mapped to a software platform
(see, e.g., [9, 10]).

However, a complete and correct mapping of process definitions and related
security properties to the corresponding software system is essential in order to
assure consistency between the modeling-level specifications on the one hand,
and the software system that actually manages corresponding process instances
and enforces the respective security properties on the other.

In this paper, we are concerned with the modeling of secure object flows
in process models — in particular UML activity diagrams. UML is a de facto
standard for software systems modeling. It provides a family of integrated mod-
eling languages for the specification of the different aspects and perspectives that
are relevant for a software system. Therefore, to demonstrate our approach, we
chose to define an extension to the UML metamodel that allows to specify con-
fidentiality and integrity properties of object flows in activity models. Activity
models have a token semantics, and object tokens are passed along object flow
edges (for details see [8]). Thus, to ensure the consistency of the corresponding
activity models, it is especially important to thoroughly specify the semantics
of secure object flows with respect to control nodes (such as fork, join, decision,
and merge nodes). Therefore, we use the Object Constraint Language (OCL,
[I1]) to formally define the semantics of our extension. Corresponding software
tools can enforce the OCL constraints on the modeling-level as well as in runtime
models. Thereby, we can ensure the consistency of the extended activity models
with the respective constraints.

The remainder of this paper is structured as follows. In Section 2] we present
our UML extension for secure object flows in activitiy models. Subsequently,
Section [3] discusses the semantics of secure object flows, with a special focus on
the semantics arising from different types of control nodes. Section @ provides two
example activity models that use our UML extension. Next, Section [Bl discusses
related work, and Section [6] concludes the paper.

2 UML Extension for Secure Object Flows

Confidentiality ensures that important/classified objects (such as business con-
tracts, court records, or electronic patient records) which are used in a business
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process can only be read by designated subjects (see, e.g., [4, 12]). Integrity en-
sures that important objects are in their original /intended state, and enable the
straightforward detection of accidental or malicious changes (see, e.g., [3, 13} [14]).
To provide modeling support for confidentiality and integrity properties of
object flows, we define a new package SecureObjectFlows as an extension to
the UML metamodel (see Fig. [l). In particular, we introduce SecureNode, Se-
curePin, SecureDateStoreNode, and SecureActivityParameterNode as new mod-
eling elements. A secure object flow is defined as an object flow between two
or more of the above mentioned secure object nodes. The SecureNode element
is defined as an abstract node, and the SecurePin, SecureDataStoreNode, and
SecureActivityParameterNode represent specialized secure nodes. In particular
these three nodes inherit the properties from their corresponding parent object
nodes as well as the security related properties from SecureNode (see Fig. [I]).

+activity Activity +activity

(from FundamentalActivities)

Package SecureObjectFlows

0.1 0.1

+node | * 1| +target +incoming | * * | +edge

ActivityNode ActivityEdge
(from FundamentalActivities) (from BasicActivities)

ControlFlow
(from BasicActivities)

Action
(from FundamentalActivities)

ObjectFlow
(from BasicActivities)

|

Classifier
’ (from Kernel) SecureNode

SecurePin

ControlNode

1| +source +outgoing | *
(from BasicActivities)

ObjectNode
(from BasicActivities)

Pin
(from BasicActivities)

CentralBufferNode DataStoreNode
(from IntermediateActivities) [ (from CompleteActivities) F'—‘ SecureDataStoreNode

ActivityParameterNode

(from BasicActivities)

Fig. 1. UML metamodel extension for secure object flows.

Below, we specify the attributes of the SecureNode elements defined via the
metamodel extension. In addition, we use the OCL to formally specify the seman-
tics of the SecureObjectFlows package. For the sake of readability, we decided to
move the associated OCL constraints to Appendix [Al However, these OCL con-
straints are a significant part of our UML extension, because they formally define
the semantics of the new modeling elements. Therefore, each UML model that
uses the SecureObjectFlows package must conform to these OCL constraints.

— confidentialityAlgorithm : Classifier [0..1]
References a classifier that provides methods to ensure confidentiality prop-
erties of the object tokens that are sent or received by a SecureNode, e.g.
a class implementing DES (Data Encryption Standard) or AES (Advanced
Encryption Standard) functionalities.
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— confidentialityKeyLength : Integer [0..1]
Defines the key length of encryption method used, for example 256 bit.

— confidentialityEnsured : Boolean [0..1]
This Attribute is derived from the attributes confidentialityAlgorithm and
confidentialityKeyLength. It evaluates to true if a SecureNode supports
confidentiality-related security properties (see OCL Constraint [J).

— integrityAlgorithm : Classifier [0..1]
References a classifier that provides methods to ensure integrity properties
of the object tokens that are sent or received by a SecureNode, e.g. a class
implementing SHA-1 or SHA-384 (Secure Hash Algorithm) functionalities.

— integrityEnsured : Boolean [0..1]
This attribute is derived from the attribute integrityAlgorithm. It evaluates
to true if a SecureNode supports integrity-related security properties (see
OCL Constraint [2]).

With respect to the attributes defined above, we specify that a secure object
node either supports confidentiality properties, or integrity properties, or both
(see OCL Constraint [3). Table [[] shows the graphical elements for SecureNodes.

Table 1. Notation of elements for modeling secure objects.

Node type Notation Explanation
SecurePin A SecurePin attached to an action is
(attached to m shown as a UML Pin element that in-
action) cludes a key symbol.

A SecureDataDtoreNode is shown as a
SecureData- «datastore» UML DataStoreNode element with a
StoreNode Name fo key symbol in the lower right corner

surrounded by a small rectangle.
A SecureActivityParameterNode is

ecure- . .

5 . shown as a UML ActivityParameter-

Activity- . .
Node element with a key symbol in

Parameter- .

Node the lower right corner surrounded by a

small rectangle.

3 Semantics of Secure Object Flows

The main element of an activity model is an activity. It represents a process
that consists of actions and different types of control and object nodes. Actions
define the tasks (steps) that are performed when executing the corresponding
activity. Activity models have a token semantics, similar (but not equal) to petri
nets (for details see [§]). In general, two different types of tokens can travel in
an activity model. Control tokens are passed along control flow edges and object
tokens are passed along object flow edges. This means, each type of token is
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exclusively passed along edges of the corresponding edge type. In other words,
object tokens cannot pass along control flow edges, and control tokens cannot
pass along object flow edges.

A decision node chooses between outgoing flows and, therefore, has one in-
coming and multiple outgoing edges. Decision nodes do not duplicate tokens.
Therefore, each token arriving at a decision node can travel along exactly one
outgoing edge. A merge node consolidates multiple incoming flows and thus has
multiple incoming and one outgoing edge. However, merge nodes do not syn-
chronize concurrent flows nor do they join incoming tokens. Thus, each token
arriving at a merge node is offered to the outgoing edge. Both, decision and
merge nodes are represented by a diamond-shaped symbol respectively.

A fork node splits a flow into multiple concurrent flows and thus has one
incoming and multiple outgoing edges. Tokens arriving at a fork node are dupli-
cated and passed along each edge that accepts the token. A join node synchro-
nizes multiple flows and therefore has multiple incoming and one outgoing edge.
A join node may join/combine incoming tokens (in contrast to merge nodes, see
above). Both, fork and join nodes are represented via a thick line (for details see

).

To ensure the consistency of the corresponding activity models, it is especially
important to thoroughly specify the semantics of secure object flows. Otherwise,
a combination of ordinary object flows and secure object flows could result in
inconsistencies. Therefore, Section [3.1] discusses the semantics of secure object
nodes with respect to direct object flows, Section discusses the semantics
with respect to decision and merge nodes, and Section B.3] with respect to fork
and join nodes.

3.1 Semantics of Secure Object Nodes regarding Direct Object Flows

We use the term direct object flow to refer to an object flow that directly connects
object nodes without intermediate control nodes. Fig. 2] shows three example
configurations of direct object flows involving SecureNodes. All statements and
OCL constraints referenced below refer to SecureNode and therefore apply for
each subtype of SecureNode (see Fig. ).

«datastore»
name

«datastore»
name

Fig. 2. Examples of direct object flows between secure nodes.

Fig. 2h shows a configuration where two SecurePins attached to an action
serve as data sources for two other secure object nodes. To ensure a secure
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object flow, we define that if an object node receives an object token from a
SecureNode, the target node must also be a SecureNode (see OCL Constraint
M)). Otherwise, a secure object flow could have a SecureNode as its source and
an ordinary object node as its target — which would result in an inconsistency
because ordinary object nodes cannot ensure the confidentiality or integrity of
object tokens.

Because each subtype of SecureNode does also inherit the properties of the
corresponding ordinary UML object node (see Fig.[)), it can process ordinary ob-
ject tokens as well as secure object tokens. Fig.2b shows a configuration where an
ordinary ActivityParameterNode and a SecureActivityParameterNode serve as
source nodes for a SecurePin. In such a configuration, the target node must be a
SecureNode (see OCL Constraint M) and the target node (here a SecurePin) must
support the same security properties as the corresponding secure source node
(here a SecureActivityParameterNode). This requirement is formally specified
via OCL Constraint, This constraint guarantees that the security properties
of object tokens sent by a certain source node can be checked and ensured by
the corresponding target node(s).

Fig.[Zk shows a configuration where a SecurePin and a SecureDataStoreNode
serve as source nodes for a SecureActivityParameterNode. Thus, according to
OCL Constraint [, the target node must also be a SecureNode (here it is a
SecureActivityParameterNode) and it must support all security properties that
are supported by the respective source nodes (see OCL Constraint [5). Moreover,
we define that all source nodes must provide compatible security properties (see
OCL Constraint[@). Otherwise, the source nodes could use, for example, different
cryptographic algorithms or different key lengths — which could again result in
inconsistencies and in a violation of OCL Constraint [Bl

3.2 Semantics of Secure Object Flows regarding Decision and Merge

Fig. Bl shows examples of the different configuration options of secure object
flows that include decision or merge nodesf Fig.[Bh shows a configuration where a
decision node has an incoming secure object flow and presents the corresponding
object tokens to multiple outgoing edges. As the source of the incoming object
flow is a SecureNode (here it is a SecurePin) both target nodes must also be
secured (see OCL Constraint [7]). Otherwise, a secure object flow could have a
SecureNode as its source and an ordinary object node as its target — which
would result in an inconsistency because ordinary object nodes cannot ensure
confidentiality or integrity of object tokens. Furthermore, target nodes of a secure
object flow must support the same security properties as the respective source
node (see OCL Constraint [{). This constraint ensures that security properties
cannot be lost when traversing a decision node and that the target node(s) are
able to check and ensure the corresponding security properties.

! Note that the OCL invariants from Appendix [A] complement each other.

2 For the sake of simplicity, Fig. Bl and Fig. @ show only two incoming/outgoing flows
for the respective control nodes. However, the corresponding OCL constraints apply
for an arbitrary number of incoming/outgoing edges, of course.
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Fig. 3. Secure object flows with decision and merge nodes.

Fig. Bb shows a configuration where a merge node brings together alternate
flows — one of which is a secure object flow. For such a configuration, we define
that if a merge node receives at least one secure object flow, the target node
of this merge node must also be a SecureNode (see OCL Constraint []). This
constraint guarantees that each secure object token passing a merge node can
be checked and processed by the corresponding target node.

Fig. Bk shows a configuration where a merge node brings together alternate
secure object flows. According to OCL Constraint [0 the target must be a Se-
cureNode. Furthermore, we define that all source nodes must provide compatible
security properties (see OCL Constraint [I0). In addition, the target node must
support all security properties of the respective source nodes (OCL Constraint
[I1). Otherwise, incompatibilities could emerge if the security properties sup-
ported by the source nodes are different from the security properties supported
by the target node.

3.3 Semantics of Secure Object Flows regarding Fork and Join

Fig.@shows examples of the different configuration options of secure object flows
that include fork or join nodes. Fig. @ shows a configuration where a fork node
splits a secure object flow into multiple concurrent flows. Because the tokens
arriving at a fork node are duplicated, all target nodes must be SecureNodes
(see OCL Constraint [[2]). Furthermore, the target nodes must support the same
security properties as the corresponding source node (see OCL Constraint [I3]).
This constraint ensures that security properties cannot be lost when travers-
ing a fork node and that the target node(s) are able to check and ensure the
corresponding security properties.

Fig. @b shows a configuration where a join node synchronizes multiple object
flows — one of which is a secure object flow. Because in this case the join node
receives secure as well as ordinary object tokens, we define that the tokens cannot
be combined (see OCL Constraint [[4]). Moreover, we define that if a join node
receives at least one secure object flow, then the target node of this join node
must also be a SecureNode (see OCL Constraint [I3]). This constraint guarantees
that each secure object token passing a join node can be checked and processed
by the corresponding target node.
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Fig. 4. Secure object flows with fork and join nodes.

Fig. @k shows a configuration where a join node synchronizes multiple secure
object flows. As defined in OCL Constraint [I5lthe target must be a secure node.
Furthermore, all source nodes must support compatible security properties (OCL
Constraint [I6)). In addition, the target node must support all security properties
of the corresponding source nodes (see OCL Constraint [I7). Otherwise, incon-
sistencies could emerge if the security properties supported by the source nodes
are different from the security properties supported by the target node.

4 Example UML Activity Diagrams

Fig. Bl shows the example of a credit application process modeled via a UML
activity diagram that uses the elements of the SecureObjectFlows package. In
addition, Table 2] lists the SecureObjectFlows attributes of the secure object
nodes in Fig. Bl Note that the different attributes are properties of the corre-
sponding SecureNodes and exist independent of their visualization in a model
The attributes are derived from the SecureNode classifier defined via the UML
metamodel extension described in Section 2l The activity starts when the Se-
cureActivityParameterNode named Credit application passes a corresponding
object token to the Check application form action. In this example, the Credit
application SecureActivityParameterNode is ensuring data integrity of the corre-
sponding object tokens via the SHA-1 algorithm (see Table [2). Remember that
the formal semantics of the respective modeling elements are defined via the
OCL constraints from Appendix [Al

Table 2. SecureObjectFlows attributes for the credit application process.

Object SecureObjectFlows attributes
Credit application integrityAlgorithm = SHA-1
confidentialityAlgorithm = AES
confidentialityKeyLength = 192

Contract

3 An alternative visualization of SecureObjectFlows attributes would be to attach
comments/constraints to secure object nodes directly in an activity diagram.
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~
Secure credit application process Contract
Negotiate
[creditSum > 5000]
Check [Form Ok] Check credit S >
application form worthiness [Check
Credit else] | Passed] ' Standard

application [oreditSum contract

Reject
application

[else]

Approve contract

[approved]

Credit
application

Fig. 5. Credit application process with secure object flows.

After completing the Check application form action, the credit worthiness
of the applicant is checked. If the check fails, the credit application is rejected
and the process ends (see Fig. [). If the credit worthiness check is passed, how-
ever, the bank offers a contract to the respective customer. If the credit sum
does not exceed 5000, the applicant is offered a standard contract. Otherwise, a
customized contract is negotiated with the client. Because the contents of this
contract are confidential, both output pins of the Standard contract and Nego-
tiate contract actions as well as the input pin of the subsequent action Approve
contract support respective confidentiality properties. As can be seen from Table
2] the encryption method used is AES and a key length of 192 bit is needed. The
activity ends with the approval of the contract.

Secure radiological examination process N

Radiological
examination

Image

Annotate image
Image
[Image
OK] Fetch patient
record
Patient record

Image reading

[Missing information]

Fig. 6. Radiological examination process with secure object flows.

The second example (Fig. [B]) presents a radiological examination process,
again modeled via a UML activity diagram including elements of the SecureOb-
jectFlows package. The process starts with a Radiological examination action
that produces images which are read in a next step. The corresponding Secure-
Pins enforce the security properties defined in Table[Blfor all Image object tokens
travelling between the Radiological examination and Image reading actions. Note
that Image and Patient record are specialized classifiers of type Patient data (see
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Fig.[M). Therefore, they inherit all SecureObjectFlows attributes defined in Table
Bl If the images are of sufficient quality, the activity continues with two concur-
rent flows: the images are annotated and the patient record is fetched. Both
actions produce output tokens of type Image and Patient record, respectively.
The output and input pins of the corresponding actions support integrity and
confidentiality properties (see Fig. [6l and Table [3]).

Table 3. SecureObjectFlows attributes for the radiological examination process.

Object SecureObjectFlows attributes
integrityAlgorithm = SHA-512
Patient data confidentialityAlgorithm = AES

confidentialityKeyLength = 256

integrityAlgorithm = SHA-512
Report confidentialityAlgorithm = AES

confidentialityKeyLength = 256

After the report is written, it is validated by a senior physician. Therefore,
the Report object is passed between the corresponding actions and SecurePins
enforce the security properties defined in Table[3l If the report is incomplete, the
corresponding actions have to be repeated (see Fig. [B). Otherwise, the report is
archived via a SecureDataStoreNode.

Patient data

1
| |

Image Patient record

Fig. 7. Patient data object types.

5 Related Work

Several approaches exist to integrate process models with security policies and /or
constraints on different abstraction levels. Jensen and Feja present an approach
to specify three types of security properties (access control, confidentiality, and
integrity) in Event-driven Process Chains [I5]. These security concerns are trans-
formed into executable process descriptions based on web-services. Although our
paper presents a UML-based extension, both approaches could be combined by
generating executable artifacts based on the same standards (e.g., WS-BPEL,
WSDL, WS-SecurityPolicy).
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In [16], Koch and Parisi-Presicce present an approach for the UML-based
specification and verification of access control policies. They use standard class
models to define a so-called type diagram for a particular access control model.
Subsequently, UML object diagrams are used to specify certain rules and con-
straints for the different entities included in the respective type diagram. After
class and object diagrams are defined, graph transformations are applied to ver-
ify the resulting access control specification. However, the focus of [16] is on
the verification of UML-based models via graph transformations, rather than on
modeling support for process-related confidentiality and integrity properties.

Another related approach is UMLsec [I7]. In essence, it provides a UML pro-
file for the definition and analysis of security properties for software systems.
For example, UMLsec is used to define and verify cryptographic protocols. How-
ever, UMLsec aims at a lower abstraction layer than our SecureObjectFlows
extension. Therefore, UMLsec is well-suited to be combined with our approach.
SecureObjectFlows would then be used to model business processes and process-
level security properties, while UMLsec would be used to specify the fine-grained
system-level procedures for encryption and integrity checking in a particular soft-
ware system.

Furthermore, Basin et al. [18] present an approach called model-driven se-
curity. They demonstrate their approach with an UML profile for RBAC (Role-
Based Access Control) called SecureUML. In [18], the focus is on integrating se-
curity aspects with a model-driven development approach rather than modeling
of business processes and process-related confidentiality and integrity properties.
In fact, the model-driven security approach of SecureUML and our SecureOb-
jectFlows package are well-suited to be combined in a complementary fashion.

6 Conclusion

A complete and correct mapping of process definitions and related security prop-
erties to the corresponding software system is essential in order to assure consis-
tency between the modeling-level specifications on the one hand, and the software
system that actually manages corresponding process instances and enforces the
respective security properties on the other hand.

UML activity models provide a process modeling language that is tightly inte-
grated with other model types from the UML family (such as class models, state
machines, or interaction models). In this paper, we presented SecureObjectFlows
as an integrated approach to model confidentiality and integrity properties of ob-
ject flows in UML activity diagrams. The semantics of our extension are formally
defined via the OCL. Corresponding software tools can enforce these invariants
on the modeling-level as well as in runtime models. Thereby, we can ensure the
consistency of secure object flows with the respective constraints. Moreover, our
extension can be applied to supplement other UML-based approaches and can
be integrated in UML-based software tools.
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A Constraints for Secure Object Flows

This section provides the complete list of OCL-expressed derived values and invariants
for the UML extension specified in Section

OCL Constraint 1 The confidentialityEnsured attribute of the SecureNode classifier
1s derived from the confidentialityAlgorithm and confidentialityKeyLength attributes
and evaluates to true if confidentiality-related security properties are supported.

context SecurelNode::confidentialityEnsured : Boolean
derive: if confidentialityAlgorithm->notEmpty() and
confidentialityKeyLength->notEmpty ()
then true else false
endif

OCL Constraint 2 The integrityEnsured attribute of the SecureNode classifier is de-
rived from the integrityAlgorithm attribute. It evaluates to true if an integrity-related
security property s supported.

context SecurelNode::integrityEnsured : Boolean
derive: if integrityAlgorithm->notEmpty()

then true else false

endif

OCL Constraint 3 A secure object node must ensure either confidentiality, or in-
tegrity, or both.

context SecureNode inv:
self.confidentialityEnsured or
self.integrityEnsured

OCL Constraint 4 Any target of a secure object flow must also be a secure object
node.

context ObjectNode inv:
if self.incoming->exists(i | i.source.oclIsKindOf(SecureNode))
then self.oclIsKindOf (SecureNode) else self.oclIsKindOf(ObjectNode)
endif

OCL Constraint 5 The downstream secure object node must support at least all se-
curity properties supported by corresponding upstream secure object modes.

context SecureNode

inv: self.incoming->forAll(i |
if i.source.oclIsKindOf(SecurelNode) and i.source.oclAsType(Securelode).confidentialityEnsured
then self.confidentialityAlgorithm = i.source.oclAsType(SecureNode).confidentialityAlgorithm and

self.confidentialityKeyLength = i.source.oclAsType(SecureNode).confidentialityKeyLength

else true endif)

inv: self.incoming->forAll(i |
if i.source.oclIsKindOf(SecurelNode) and i.source.oclAsType(SecureNode).integrityEnsured
then self.integrityAlgorithm = i.source.oclAsType(Securelode).integrityAlgorithm
else true endif)

OCL Constraint 6 All secure object nodes having the same target node must support
identical security properties.

context SecureNode
inv: self.incoming->forAl1(it,i2 |
if ii.source.oclIsKind0f (SecureNode) and i2.source.oclIsKindOf(SecureNode) and
i1.source.oclAsType(Securelode) .confidentialityEnsured and i2.source.oclAsType(SecureNode).confidentialityEnsured
then if.source.oclAsType(SecurelNode).confidentialityAlgorithm = i2.source.oclAsType(SecurelNode).confidentialityAlgorithm and
i1.source.oclAsType(SecureNode) .confidentialityKeyLength = i2.source.oclAsType(SecureNode).confidentialityKeyLength
else true endif)
inv: self.incoming->forAl1(it,i2 |
if i1.source.oclIsKind0f(SecureNode) and i2.source.oclIsKindOf(SecureNode) and
i1.source.oclAsType(SecureNode) . integrityEnsured and i2.source.oclAsType(SecureNode).integrityEnsured
then if.source.oclAsType(SecureNode).integrityAlgorithm = i2.source.oclAsType(SecureNode) .integrityAlgorithm
else true endif)
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OCL Constraint 7 If a decision node has a secure source node, all target object nodes
must also be secured.

context DecisionNode inv:
if self.incoming->exists(i | i.source.oclIsKindOf(SecureNode))
then self.outgoing->forAll(o | o.target.oclIsKind0f (SecurelNode))
else true endif

OCL Constraint 8 Target secure nodes of a decision node must support identical
security properties as the corresponding source node.

context DecisionNode
inv: self.incoming->forAll(i |
if i.source.oclIsKindOf(SecureNode) and i.source.oclAsType(SecureNode).confidentialityEnsured
then self.outgoing->forAll(o |
o.target.oclAsType (Securelode) .confidentialityAlgorithm = i.source.oclAsType(SecureNode).confidentialityAlgorithm and
o.target.oclAsType (Securelode) .confidentialityKeyLength = i.source.oclAsType(SecureNode).confidentialityKeyLength)
else true endif)
inv: self.incoming->forAll(i |
if.i.source.oclIsKindOf (Securelode) and i.source.oclAsType(SecureNode).integrityEnsured
then self.outgoing->forAll(o |
o.target.oclAsType(Securelode) .integrityAlgorithm = i.source.oclAsType(SecureNode).integrityAlgorithm)
else true endif)

OCL Constraint 9 If a merge node has at least one secure source node, the target
must also be a secure node.

context MergelNode inv:
if self.incoming->exists(i | i.source.oclIsKindOf(SecureNode))
then self.outgoing.target.oclIsKindDf (SecureNode)
else true endif

OCL Constraint 10 All secure source nodes that serve as input to a merge node must
support the same security properties.

context MergeNode
inv: self.incoming->forAl1(it,i2 |
if i1.source.oclIsKind0f (SecureNode) and i2.source.oclIsKindOf(SecureNode) and
i1.source.oclAsType(Securelode) .confidentialityEnsured and i2.source.oclAsType(SecureNode).confidentialityEnsured
then il.source.oclAsType(SecureNode).confidentialityAlgorithm = i2.source.oclAsType(SecurelNode).confidentialityAlgorithm and
i1.source.oclAsType(SecureNode) .confidentialityKeyLength = i2.source.oclAsType(SecureNode).confidentialityKeyLength
else true endif)
inv: self.incoming->forAll(it,i2 |
if ii.source.oclIsKind0f (SecureNode) and i2.source.oclIsKindOf(SecureNode) and
i1.source.oclAsType(Securelode) .integrityEnsured and i2.source.oclAsType(SecurelNode).integrityEnsured
then if.source.oclAsType(SecureNode).integrityAlgorithm = i2.source.oclAsType(SecurelNode) .integrityAlgorithm
else true endif)

OCL Constraint 11 The secure target node of a merge node must be capable of sup-
porting all security properties of corresponding source nodes.

context Mergelode
inv: self.incoming->forAll(i |
if i.source.oclIsKindOf(SecureNode) and i.source.oclAsType(SecureNode).confidentialityEnsured
then self.outgoing.target.oclAsType(SecureNode).confidentialityAlgorithm =
i.source.oclAsType(SecureNode) .confidentialityAlgorithm and
self.outgoing.target.oclAsType(Securelode).confidentialityKeyLength =
i.source.oclAsType(SecureNode) .confidentialityKeyLength
else true endif)
inv: self.incoming->forAll(i |
if i.source.oclIsKindDf(SecurelNode) and i.source.oclAsType(SecurelNode).integrityEnsured
then self.outgoing.target.oclAsType(Securelode).integrityAlgorithn = i.source.oclAsType(SecurelNode) .integrityAlgorithm
else true endif)

OCL Constraint 12 If a fork node has a secure source node, all target nodes must
also be secured.

context ForklNode inv:
if self.incoming.source.oclIsKind0f (Securelode)
then self.outgoing->forAll(o | o.target.oclIsKindOf(SecureNode))
else true endif
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OCL Constraint 13 Secure target nodes of a fork node must support the same secu-
rity properties as the corresponding source node.

context ForkNode
inv: if self.incoming.source.oclIsKind0f(SecureNode) and self.incoming.source.oclAsType(SecurelNode).confidentialityEnsured
then self.outgoing->forAll(o |
o.target.oclAsType(Secureliode) .confidentialityAlgorithm =
self.incoming.source.oclAsType(SecureNode) .confidentialityAlgorithm and
o.target.oclAsType (Securelode) .confidentialityKeyLength =
self.incoming.source.oclAsType(Securelode) . confidentialityKeyLength)
else true endif
inv: if self.incoming.source.oclIsKind0Df(Securellode) and self.incoming.source.oclAsType(Securelode).integrityEnsured
then self.outgoing->forAll(o |
o.target.oclAsType(Securelode) .integrityAlgorithm = self.incoming.source.oclAsType(SecurelNode).integrityAlgorithm)
else true endif

OCL Constraint 14 If both, secure object nodes and ordinary object nodes are input
to a join node, this join node must not combine the corresponding tokens.

context JoinNode inv:
self.incoming->forA11(i1,i2 |
if i1.source.oclIsKind0f (SecureNode) and
i2.source.oc1TsKind0f (SecureNode) = false
then self.isCombineDuplicate = false
else true endif)

OCL Constraint 15 If a join node has at least one secure source node, the corre-
sponding target node must also be secured.

context JoinNode inv:
if self.incoming->exists(i | i.source.oclIsKindOf(SecureNode))
then self.outgoing.target.oclIsKindDf (SecureNode)
else true endif

OCL Constraint 16 All secure source nodes of a join node must support the same
security properties.

context JoinNode
inv: self.incoming->forAl1(it,i2 |
if i1.source.oclIsKind0f (SecureNode) and i2.source.oclIsKindOf(SecureNode) and
i1.source.oclAsType(Securelode) .confidentialityEnsured and i2.source.oclAsType(SecureNode).confidentialityEnsured
then if.source.oclAsType(SecurelNode).confidentialityAlgorithm = i2.source.oclAsType(SecurelNode).confidentialityAlgorithm and
i1.source.oclAsType(SecureNode) .confidentialityKeyLength = i2.source.oclAsType(SecureNode).confidentialityKeyLength
else true endif)
inv: self.incoming->forAl1(it,i2 |
if ii.source.oclIsKind0f (SecureNode) and i2.source.oclIsKindOf (SecureNode) and
i1.source.oclAsType(SecureNode) . integrityEnsured and i2.source.oclAsType(SecureNode).integrityEnsured
then if.source.oclAsType(Securelode).integrityAlgorithn = i2.source.oclAsType(SecureNode).integrityAlgorithm
else true endif)

OCL Constraint 17 The secure target node of a join node must be capable of sup-
porting all security properties of corresponding source secure nodes.

context JoinNode
inv: self.incoming->forAll(i |
if i.source.oclIsKind0f(SecureNode) and i.source.oclAsType(SecureNode).confidentialityEnsured
then self.outgoing.target.oclAsType(SecureNode).confidentialityAlgorithm =
i.source.oclAsType (Securelode) .confidentialityAlgorithm and
self.outgoing.target.oclAsType(Securelode).confidentialityKeyLength =
i.source.oclAsType(Securelode) . confidentialityKeyLength
else true endif)
inv: self.incoming->forAll(i |
if i.source.oclIsKindDf(SecureNode) and i.source.oclAsType(SecurelNode).integrityEnsured
then self.outgoing.target.oclAsType(Securelode).integrityAlgorithn = i.source.oclAsType(SecurelNode) .integrityAlgorithm
else true endif)
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