
BISE – RESEARCH PAPER

Modeling Support for Role-Based Delegation
in Process-Aware Information Systems
The paper presents an integrated approach for the modeling and enforcement of
delegation policies in process-aware information systems. Based on a generic formal
metamodel, the detection of delegation-related conflicts is discussed and a set of
pre-defined resolution strategies for these conflicts is provided. Moreover, a corresponding
UML extension, a prototypical proof of concept implementation, and a case study with
real-world business processes is provided.

DOI 10.1007/s12599-014-0343-3

The Authors

Dr. Sigrid Schefer-Wenzl (�)
Institute for Information Systems
and New Media
WU Vienna
1090 Vienna
Austria
and
Competence Center for IT-Security
University of Applied Sciences
Campus Vienna
1090 Vienna
Austria
sigrid.schefer-wenzl@wu.ac.at

Prof. Dr. Mark Strembeck
Institute for Information Systems
and New Media
WU Vienna
1090 Vienna
Austria
mark.strembeck@wu.ac.at

Received: 2013-03-26
Accepted: 2014-02-03
Accepted after two revisions by
Prof. Dr. Becker.
Published online: 2014-08-23

This article is also available in Ger-
man in print and via http://www.
wirtschaftsinformatik.de: Schefer-
Wenzl S, Strembeck M (2014) Model-
lierungsunterstützung für die rol-
lenbasierte Delegation in prozess-
gestützten Informationssystemen.
WIRTSCHAFTSINFORMATIK. doi:
10.1007/s11576-014-0433-3.

Electronic Supplementary Material
The online version of this article
(doi: 10.1007/s12599-014-0343-3)
contains supplementary material,
which is available to authorized
users.

© Springer Fachmedien Wiesbaden
2014

1 Introduction

A business process consists of a set of
tasks which are performed by an orga-
nization to reach certain corporate goals
(see, e.g., zur Muehlen and Indulska
2010). If the execution of a business pro-
cess is supported via an information sys-
tem, instances of a business process are
also referred to as workflows (see, e.g.,
Weske 2012). To support the secure ex-
ecution of a particular workflow, subjects
participating in a workflow must own
the permissions that are needed to ex-
ecute the corresponding tasks (see, e.g.,
Georgiadis et al. 2001; Oh and Park 2003;
Strembeck and Mendling 2011; Thomas
and Sandhu 1997; Wainer et al. 2003).
In recent years, role-based access control
(RBAC) (see, e.g., Ferraiolo et al. 2007;
Sandhu et al. 1996) has developed into
a de facto standard for access control in
research and industry. In RBAC, roles
are used to model different job posi-
tions and responsibilities within an orga-
nization and/or information system. Ac-
cess permissions are assigned to roles ac-
cording to the tasks each role has to ac-
complish. These roles are then assigned
to human users according to their re-
spective work profile (see, e.g., Strem-
beck 2010). Roles are also used as an ab-
stract concept for delegation (see, e.g.,

Crampton and Khambhammettu 2008b;
Wainer et al. 2007) as well as for the
assignment of duties defined via obliga-
tions (see, e.g., Schaad and Moffett 2002;
Strembeck 2005; Zhao et al. 2007).

While authorization policies define a
subject’s permissions, obligation policies
define a subject’s duties (see, e.g., Cole
et al. 2001; Sloman 1994; Strembeck
2005). Delegation provides a mechanism
to increase flexibility in authorization
and obligation management. In essence,
a subject can delegate its tasks, duties, or
roles to another subject (see, e.g., Schaad
and Moffett 2002). Subsequently, the
subject receiving the delegation (the dele-
gatee) will act on behalf of the delegating
subject (the delegator). Delegation has
been identified as an important concept
in workflow systems and many other ap-
plication areas (see, e.g., Crampton and
Khambhammettu 2008c; Hasebe et al.
2010; Ravichandran and Yoon 2006).

In addition, we support the definition
of different types of entailment con-
straints. A task-based entailment con-
straint places some restriction on the
subjects who can perform a taskx given
that a certain subject has performed
tasky . Thus, task-based entailment con-
straints have an impact on the com-
bination of subjects and roles who are
allowed (or required) to execute partic-
ular tasks (see, e.g., Russell et al. 2005;
Schefer et al. 2011; Strembeck and
Mendling 2010, 2011; Tan et al. 2004;
Warner and Atluri 2006; Wolter et al.
2008). In process-aware information
systems, mutual exclusion constraints
enforce conflict of interest policies by
defining that two or more tasks must be
performed by different individuals. Con-
flict of interest arises as a result of the
simultaneous assignment of two mutual

Business & Information Systems Engineering 4|2014 215

mailto:sigrid.schefer-wenzl@wu.ac.at
mailto:mark.strembeck@wu.ac.at
http://www.wirtschaftsinformatik.de
http://www.wirtschaftsinformatik.de
http://dx.doi.org/10.1007/s11576-014-0433-3
http://dx.doi.org/10.1007/s12599-014-0343-3

BISE – RESEARCH PAPER

exclusive entities (e.g., permissions or
tasks) to the same subject. In contrast,
binding constraints specify that bound
tasks must always be performed by the
same subject or role (see, e.g., Strembeck
and Mendling 2010, 2011; Tan et al. 2004;
Wainer et al. 2003). They can be subdi-
vided into subject-based and role-based
constraints (see, e.g., Strembeck and
Mendling 2010, 2011).

The immanent complexity of delega-
tions and task-based entailment con-
straints is a central problem for delega-
tion in process-aware information sys-
tems (see, e.g., Crampton and Khamb-
hammettu 2008a; Schaad 2001). Thus,
when delegating tasks, roles, or duties,
corresponding design-time and runtime
checks need to ensure the consistency of
the respective RBAC model. In particular,
at design-time conflicts may result from
delegations which are inconsistent with
the corresponding RBAC model, espe-
cially regarding related entailment con-
straints. At runtime, conflicts may result
from inconsistent task allocations.

The main contribution of this paper
is the consideration of delegation aspects
when checking and ensuring the con-
sistency of process-related RBAC mod-
els. Our integrated modeling approach
for delegation policies and corresponding
processes acts as an enabler to document
and communicate more efficiently which
delegation aspects need to be consid-
ered when executing a certain process. To
achieve this, we consolidate and extend
our previous publications from Schefer
and Strembeck (2011b) and Schefer-
Wenzl et al. (2012): Our approach is
based on a metamodel which formally
integrates the core elements of pro-
cess models and delegation models for
roles, tasks, and duties (see Fig. 2). This
metamodel was presented in Schefer-
Wenzl et al. (2012). Corresponding mod-
eling support is provided by extending
the Unified Modeling Language (UML;
OMG 2011b). In particular, we intro-
duced modeling support for delegating
roles, tasks, and duties in Schefer and
Strembeck (2011b) via extended UML2
activity diagrams. In Schefer-Wenzl et al.
(2012), we provide a set of algorithms
to detect and name potential delegation-
related conflicts. Moreover, these algo-
rithms check and ensure the consis-
tency of mutual-exclusion and binding
constraints in business processes in the
context of delegation.

We apply model-driven development
(MDD) techniques (see, e.g., Schmidt

2006; Selic 2003; Stahl and Völter 2006)
to support the integrated modeling and
execution of delegation policies and busi-
ness processes. In the MDD context, a
computation-independent model (CIM)
defines a certain domain (or subdomain)
at a generic level. The CIM is indepen-
dent of a particular modeling language or
technology. A CIM can be used to build
a platform-independent model (PIM) of
the corresponding domain. While it is in-
dependent of any platform, and thereby
neutral from an implementation point
of view, the PIM is typically specified in
a particular modeling language (for ex-
ample via MOF-based languages such as
BPMN or UML) and describes the struc-
ture of a system, the elements/results that
are produced by a system, or the con-
trol and object flow in a system. Fi-
nally, a platform-specific model (PSM)
describes the realization/implementation
of a software system via platform-specific
technologies and tools. In particular, we
chose a model-driven approach to sepa-
rate the business/application logic from
the underlying platform technology (see,
e.g., Schmidt 2006; Selic 2003; Stahl and
Völter 2006).

In this paper, we consolidate the results
from Schefer and Strembeck (2011b) and
Schefer-Wenzl et al. (2012) and present
the following novel contributions: We
introduce a set of pre-defined resolu-
tion strategies for conflicts resulting from
the delegation of roles, tasks and du-
ties in business processes. In addition, we
implemented all concepts introduced in
the formal metamodel and in the UML
extension as an extension to the Busi-
nessActivity library and runtime engine
(available from BAL 2012). This extended
software platform enables a seamless
mapping between modeling-level specifi-
cations of processes, RBAC policies, and
delegation policies to the correspond-
ing runtime models. Furthermore, we
conducted a case study to evaluate the
applicability of our UML extension for
real-world processes.

The remainder of this paper is struc-
tured as follows. In Sect. 2, we shortly
introduce terminology and present the
formal definitions of a process-related
RBAC delegation model at the CIM-layer.
Section 3 discusses different conflicts that
may occur when delegating roles, tasks,
or duties. Moreover, we provide cor-
responding conflict resolution strategies
that ensure the consistency of process-
related RBAC delegation models. Sub-
sequently, Sect. 4 provides algorithms

to automatically detect the conflicts dis-
cussed in Sect. 3. Section 5 presents a
UML extension that allows to model
the delegation of roles, tasks, and duties
via extended UML2 Activity diagrams at
the PIM-layer. Section 6 presents a case
study to illustrate the practical applicabil-
ity of our UML extension in real business
settings. Subsequently, Sect. 7 gives an
overview of our extended software plat-
form to manage process-related RBAC
delegation models at the PSM-layer. Fi-
nally, Sect. 8 discusses related work and
Sect. 9 concludes the paper.

2 Process-Related RBAC
Delegation Models

Figure 1 shows a simplified credit ap-
plication process visualized as standard
UML2 activity diagram which will serve
as a running example in this paper. When
executing this process, human users and
autonomous software agents have to ful-
fill certain tasks. Each task in a workflow
(such as checking a customer’s creditwor-
thiness or negotiating a contract) is typ-
ically associated with certain access op-
erations (e.g., to access the customer’s
record or to sign the contract, respec-
tively). Thus, a subject participating in a
workflow must be authorized to perform
the tasks needed to complete the pro-
cess (see, e.g., Georgiadis et al. 2001; Oh
and Park 2003; Strembeck and Mendling
2011).

In organizational contexts, tasks are
also associated with duties (see, e.g.,
Schefer and Strembeck 2011a). Each duty
defines an action that must be performed
by a certain subject in order to comply
with legal or organizational regulations
(see, e.g., Strembeck 2005). For example,
the task “negotiate contract” from Fig. 1
can be associated with the duty “ful-
fill pre-contractual information duties”
stemming from respective legal require-
ments. A subject responsible for per-
forming this task and the associated duty
needs all necessary access permissions to
perform them (see, e.g., Strembeck 2005;
Zhao et al. 2007).

An organization’s business processes
and software systems are often modeled
via graphical modeling languages. How-
ever, corresponding organizational poli-
cies are often specified via informal tex-
tual descriptions (see, e.g., Recker et al.
2006). Thus, a link between tasks, du-
ties, and subjects/roles is usually miss-
ing. This missing link can easily result

216 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

Fig. 1 Credit application process modeled as standard UML2 activity diagram

in intransparencies and inconsistencies
between process descriptions and actual
process executions (see, e.g., Wolter et al.
2009). Especially in the case of delega-
tion, where the original subject assign-
ment is changed once or even more than
once (in case of multi-step delegation,
see, e.g., Barka and Sandhu 2000b), the
definition, monitoring, and actual en-
forcement of delegated tasks and duties
is difficult. Therefore, we propose an in-
tegrated modeling approach for business
processes and the delegation of roles,
tasks, and duties. Such an integrated
modeling approach also facilitates the
control and reporting on a company’s
fulfillment of compliance requirements.
Additionally, the integration also sup-
ports the elicitation and definition of
task- or duty-related constraints, such as
mutual exclusion or binding constraints.

2.1 Delegation in a Business Process
Context

In our process-related delegation model,
roles, tasks, and duties are delegable. In
essence, a subject can delegate the right
to perform a task and associated duties to
another subject. In case of a permanent
delegation, the delegation is valid for all
executions of a particular business pro-
cess (e.g., a credit application process). In
case of a temporary delegation, it is only
valid for one process instance (e.g., Mr.
Mayer’s credit application process).

In the context of role-based access con-
trol, several delegation approaches use
the concept of so-called delegation roles
(see, e.g., Joshi and Bertino 2006; Shang
and Wang 2008; Zhang et al. 2003b). In
our delegation model, a delegation role
is created by the delegator and comprises
a set of delegated tasks and duties (sim-
ilar to Zhang et al. 2003b). In this way,

each duty is associated with a certain task
(see, e.g., Schefer and Strembeck 2011a).
A delegator can delegate all or a subset of
his/her delegable tasks, duties, or roles by
assigning them to a delegation role. Sub-
sequently, delegation roles are assigned to
delegatees and can either be defined for
temporary or for permanent delegation.
Permanent delegation roles authorize the
delegatee to perform the delegated tasks
and duties in all instances of the pro-
cess. In contrast, a temporary delegation
role (DRT) authorizes the delegatee to
perform the delegated tasks and duties
only in particular process instances. In
general, delegation roles and all assign-
ments to delegation roles are managed
by the delegating subject. All other roles
are called regular roles (RR) and are usu-
ally managed by the security officer of
the respective company. Figure 2 visual-
izes the elements of the formal delegation
metamodel which will be integrated into
process-related RBAC models below (see
Definition 4 from Sect. 2.2).

Different kinds of entailment con-
straints can be defined on tasks to restrict
which subjects are allowed to execute a
particular task. In this paper, we focus
on mutual-exclusion and binding con-
straints. Static mutual-exclusion (SME)
and dynamic mutual-exclusion (DME)
constraints are used in workflows to en-
force conflict of interest policies (see,
e.g., Botha and Eloff 2001; Casati et al.
2001; Strembeck and Mendling 2010,
2011; Tan et al. 2004; Wainer et al. 2003;
Warner and Atluri 2006). A SME con-
straint defines that two statically mu-
tual exclusive tasks must not be as-
signed to the same subject. In turn, a
DME constraint defines that two dy-
namically mutual exclusive tasks must
not be executed by the same subject
in the same process instance. Moreover,
subject-binding (SB) and role-binding

(RB) constraints can be defined which are
used to enforce process-related binding-
of-duty constraints (see, e.g., Strembeck
and Mendling 2010, 2011). In particular,
a SB constraint defines that two bound
tasks must be performed by the same
individual. In turn, a RB constraint de-
fines that bound tasks must be performed
by members of the same role, but not
necessarily by the same individual.

To ensure the proper enforcement of
entailment constraints, we also need to
consider these constraints in the con-
text of delegation (see Sect. 4). For ex-
ample, the delegation of tasks, duties,
or roles must not authorize the delega-
tee to perform two SME tasks. In con-
trast, when delegating a task which has
a subject-binding to another task, both
tasks have to be delegated to the same
subject. Otherwise, the subject-binding
constraint cannot be fulfilled.

2.2 Formal Metamodel for
Process-Related RBAC Delegation
Models

In this Section, we provide the formal
definitions for process-related RBAC del-
egation models at the CIM layer. For the
purposes of this paper, Definitions 1–3
summarize the definitions for process-
related RBAC models (for further details
see Strembeck and Mendling 2011). The
formal definitions then serve as a basis
for extending arbitrary process modeling
languages and process engines with sup-
port for process-related RBAC delegation
models. In this paper, we will demon-
strate this by extending the UML (see
Sect. 5). Definition 1 specifies the es-
sential elements of process-related RBAC
models and their basic interrelations. In
particular, we model authority via roles,
role-hierarchies, and task-to-role assign-

Business & Information Systems Engineering 4|2014 217

BISE – RESEARCH PAPER

Fig. 2 Conceptual overview: Main elements of process-related RBAC delegation models

ments. Responsibility is modeled via du-
ties which are linked to tasks and as-
signed to subjects. Subjects and corre-
sponding duties together form obliga-
tion policies. Competence is modeled via
role-to-subject assignments.

Definition 1 (Process-related RBAC
model) A Process-related RBAC Model
PRM = (E,Q,D) where E = S ∪ R ∪
PT ∪ PI ∪ TT ∪ TI refers to pair-
wise disjoint sets of the model, Q =
rh ∪ rsa ∪ tra ∪ es ∪ er ∪ ar ∪ pi ∪ ti
to mappings that establish relationships,
and D = sb ∪ rb ∪ sme ∪ dme to binding
and mutual-exclusion constraints, such
that:
• For the sets of the meta model:

– An element of S is called Subject.
S �= ∅.

– An element of R is called Role. R �=
∅.

– An element of PT is called Process
Type. PT �= ∅.

– An element of PI is called Process
Instance.

– An element of TT is called Task Type.
TT �= ∅.

– An element of TI is called Task
Instance.

• For the partial mappings of the meta
model (P refers to the power set):
1. The mapping rh : R �→ P(R) is

called role hierarchy. For rh(rs) =

Rj we call rs senior role and Rj the
set of direct junior roles. The tran-
sitive closure rh∗ defines the in-
heritance in the role-hierarchy such
that rh∗(rs) = Rj∗ includes all di-
rect and transitive junior-roles that
the senior-role rs inherits from. The
role-hierarchy is cycle-free, i.e. for
each r ∈ R : rh∗(r) ∩ {r} = ∅.

2. The mapping rsa : S �→ P(R)

is called role-to-subject assignment.
For rsa(s) = Rs we call s subject and
Rs ⊆ R the set of roles assigned to
this subject (the set of roles owned
by s).

This assignment implies a map-
ping role ownership rown : S �→
P(R), such that for each sub-
ject s all direct and inherited
roles are included, i.e. rown(s) =⋃

r∈rsa(s) rh∗(r) ∪ rsa(s). The map-

ping rown−1 : R �→ P(S) returns all
subjects assigned to a role (directly
or transitively via a role-hierarchy).

3. The mapping es : TI �→ S is called
executing-subject mapping. For
es(t) = s we call s the executing
subject and t is called executed task
instance.

4. The mapping er : TI �→ R is called
executing-role mapping. For er(t) =
r we call r the executing role and t is
called executed task instance.

5. The mapping tra : R �→ P(TT) is
called task-to-role assignment. For

tra(r) = Tr we call r role and Tr ⊆
TT is called the set of tasks assigned
to r.

This assignment implies a map-
ping task ownership town : R �→
P(TT), such that for each role r
the tasks inherited from its junior-
roles are included, i.e. town(r) =⋃

rinh∈rh∗(r) tra(rinh) ∪ tra(r). The

mapping town−1 : TT �→ P(R) re-
turns the set of roles a task is as-
signed to (directly or transitively via
a role-hierarchy).

6. The mapping ti : (TT × PI) �→
P(TI) is called task instantiation.
For ti(tT,pI) = Ti we call Ti ⊆ TI
set of task instances, tT ∈ TT is
called task type and pI ∈ PI is called
process instance.

7. The mapping ar : S �→ R is called
active role mapping. For ar(s) = r
we call s the subject and r the
active-role of s.1

8. Further, we allow the definition
of subject-binding, role-binding,
static mutual-exclusion, and dy-
namic mutual-exclusion con-
straints on task types. Related con-
sistency requirements are specified
in Strembeck and Mendling (2011):

The mapping sb : TT �→ P(TT)

is called subject-binding. For
sb(t) = Tsb, we call t the subject
binding task and Tsb ⊆ TT the set of
subject-bound tasks.

1We assume that each subject can (at the subject’s discretion) activate the roles that are directly assigned to this subject as well as the junior-roles of
its directly assigned roles (see, e.g., Ferraiolo et al. 1999; Sandhu et al. 1996)

218 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

The mapping rb : TT �→ P(TT)

is called role-binding. For rb(t) =
Trb, we call t the role binding task
and Trb ⊆ TT the set of role-bound
tasks.

The mapping sme : TT �→
P(TT) is called static mutual ex-
clusion. For sme(t1) = Tsme with
Tsme ⊆ TT , we call each pair t1 and
tx ∈ Tsme statically mutual exclusive
tasks.

The mapping dme : TT �→
P(TT) is called dynamic mutual
exclusion. For dme(t1) = Tdme with
Tdme ⊆ TT , we call each pair t1
and tx ∈ Tdme dynamically mutual
exclusive tasks.

Definition 2 provides rules for the
static correctness of process-related
RBAC models to ensure the design-time
consistency of the included elements and
relationships.

Definition 2 Let PRM = (E,Q,D) be
a Process-related RBAC Model. PRM is
said to be statically correct if the follow-
ing requirements hold:
1. Tasks cannot be mutual exclusive to

themselves:

∀t2 ∈ sme(t1): t1 �= t2 and

∀t2 ∈ dme(t1): t1 �= t2

2. Mutuality of mutual exclusion con-
straints:

∀t2 ∈ sme(t1): t1 ∈ sme(t2) and

∀t2 ∈ dme(t1): t1 ∈ dme(t2)

3. Tasks cannot be bound to themselves:

∀t2 ∈ sb(t1): t1 �= t2 and

∀t2 ∈ rb(t1): t1 �= t2

4. Mutuality of binding constraints:

∀t2 ∈ sb(t1): t1 ∈ sb(t2) and

∀t2 ∈ rb(t1): t1 ∈ rb(t2)

5. Tasks are either statically or dynami-
cally mutual exclusive:

∀t2 ∈ sme(t1): t2 /∈ dme(t1)

6. Either SME constraint or binding con-
straint:

∀t2 ∈ sme(t1): t2 /∈ sb(t1) ∧ t2 /∈ rb(t1)

7. Either DME constraint or subject-
binding constraint:

∀t2 ∈ dme(t1): t2 /∈ sb(t1)

8. Consistency of task-ownership and
SME:

∀t2 ∈ sme(t1):
town−1(t2) ∩ town−1(t1) = ∅

9. Consistency of role-ownership and
SME:

∀t2 ∈ sme(t1), r2 ∈ town−1(t2),

r1 ∈ town−1(t1):
rown−1(r2) ∩ rown−1(r1) = ∅

Definition 3 provides the rules for dy-
namic correctness of a process-related
RBAC model, i.e. the rules that can only
be checked in the context of runtime
process instances.

Definition 3 Let PRM = (E,Q,D) be a
Process-related RBAC Model and PI its
set of process instances. PRM is said to
be dynamically correct if the following
requirements hold:
1. In the same process instance, the ex-

ecuting subjects of SME tasks must
be different: ∀t2 ∈ sme(t1),pi ∈ PI :
∀tx ∈ ti(t2,pi), ty ∈ ti(t1,pi) : es(tx) ∩
es(ty) = ∅

2. In the same process instance, the ex-
ecuting subjects of DME tasks must
be different: ∀t2 ∈ dme(t1),pi ∈ PI :
∀tx ∈ ti(t2,pi), ty ∈ ti(t1,pi) : es(tx) ∩
es(ty) = ∅

3. In the same process instance, role-
bound tasks must have the same
executing-role: ∀t2 ∈ rb(t1),pi ∈ PI :
∀tx ∈ ti(t2,pi), ty ∈ ti(t1,pi) : er(tx) =
er(ty)

4. In the same process instance, subject-
bound tasks must have the same
executing-subject: ∀t2 ∈ sb(t1),pi ∈
PI : ∀tx ∈ ti(t2,pi), ty ∈ ti(t1,pi) :
es(tx) = es(ty)

Figure 2 shows a conceptual model (vi-
sualized as a class diagram) that includes
the essential relations of process-related
RBAC delegation models. However, while
a graphical metamodel is a good means
to visualize the connection of different
artifacts, it cannot express all formal re-
lations and invariants of these artifacts.
Therefore, Definition 4 formally specifies
the essential elements of a metamodel for
process-related RBAC delegation models
and the basic interrelations between these
elements. In particular, we combine well-
known concepts of several existing dele-
gation models (see, e.g., Crampton and
Khambhammettu 2008a; Hasebe et al.
2010; Schaad and Moffett 2002; Zhang
et al. 2003b) and integrate them into
a metamodel for process-related RBAC
models.

Definition 4 (Process-Related RBAC
Delegation Model) Let PRDM =

(E,Q,D,DL) be a Process-Related Del-
egation Model, where E refers to the
pairwise disjoint sets of the metamodel,
Q to mappings that establish relation-
ships, D to binding and mutual-exclusion
constraints, and DL to mappings for
delegation policies.

The additional sets of the Process-
Related RBAC Delegation Model are:
• An element of RR is called Regular

Role. RR ⊆ R.
• An element of DR is called Delegation

Role. DR ⊆ R
• An element of DRT is called Temporary

Delegation Role. DRT ⊆ DR.
• An element of DTT is called Delegable

Task Type. DTT ⊆ TT .
• An element of DUT is called Duty

Type.
• An element of DUI is called Duty

Instance.
• An element of DDUT is called Dele-

gable Duty Type. DDUT ⊆ DUT .
For the mappings of the Process-Related

RBAC Model (Q,D) see Definition 1. Be-
low, we define the additional mappings
for delegation: DL = rrh∪drh∪ creator ∪
drpi ∪ trra ∪ trdel ∪ dta ∪ rrsa ∪ drsa ∪
dui ∪ res∪ rer (P refers to the power set):

1. Roles R are partitioned into regu-
lar roles (RR) and delegation roles
(DR). In RBAC, roles can be ar-
ranged in a role-hierarchy, where
senior-roles inherit the permissions
from their junior-roles. For exam-
ple, in a bank, the senior-role “Bank
manager” inherits all permissions
from its junior-role “Bank clerk”.
Moreover, if “Bank clerk” itself has
junior-roles, “Bank manager” tran-
sitively inherits all permissions from
its transitive junior-roles. To avoid
invalid permission inheritance, the
regular role-hierarchy only consists
of regular roles. This mapping re-
places the role-hierarchy mapping rh
in Definition 1.def:pcm-rh:

The mapping rrh : RR �→ P(RR)

is called regular role-hierarchy. For
rrh(rs) = RRj, we call rs ∈ RR se-
nior regular role and RRj ⊆ RR the
set of direct junior regular roles. The
transitive closure rrh∗ defines the in-
heritance in the role-hierarchy such
that rrh∗(rs) = RRj∗ includes all di-
rect and transitive junior-roles that
the senior-role rs inherits from. The
regular role-hierarchy is cycle-free,
i.e. for each r ∈ RR : rrh∗(r) ∩ r = ∅.

Business & Information Systems Engineering 4|2014 219

BISE – RESEARCH PAPER

2. Delegation roles can be arranged in
a delegation role-hierarchy. Note that
each delegation role may have junior
regular roles or junior delegation
roles (see, e.g., Zhang et al. 2003b).
However, delegation roles must not
have senior regular roles to avoid in-
valid permission inheritance in the
regular role hierarchy:

The mapping drh : DR �→ P(R) is
called delegation role-hierarchy. For
drh(drs) = Rj, we call drs ∈ DR se-
nior delegation role and Rj ⊆ R the
set of direct junior-roles. The tran-
sitive closure drh∗ defines the in-
heritance in the role-hierarchy such
that drh∗(drs) = Rj∗ includes all di-
rect and transitive junior-roles that
the senior-role drs inherits from. The
delegation role-hierarchy is cycle-
free, i.e. for each r ∈ R: drh∗(r) ∩
r = ∅.

3. Each subject can create an arbitrary
number of delegation roles. Subse-
quently, the creator will act as the
delegator of its delegation roles. For
example, if subject “Alice” creates a
delegation role “SummerIntern”, she
can delegate parts (or all) of her as-
signed tasks and duties to “Summer-
Intern”:

The mapping creator(dr) : DR �→
S is called delegation role creator.
For creator(dr) = s, we call dr ∈ DR
delegation role and s ∈ S the creator of
this delegation role.

4. Each delegation role can be specified
either for permanent or for tempo-
rary delegation. By default, a delega-
tion role is permanent and is valid for
all process types. In case of tempo-
rary delegation, a temporary delega-
tion role has to be specified which is
valid only for particular process in-
stances. For example, the subject “Al-
ice” wants to go on holidays and still
has unfinished credit applications.
Thus, she creates a delegation role
“SummerIntern” that is only valid
for the unfinished applications:

The mapping drpi : DRT �→
P(PI) is called temporary delegation
role mapping. For drpi(drt) = Pdrt ,
we call drt ∈ DRT temporary delega-
tion role for Pdrt ⊆ PI the set of process
instances.

5. Task types are assigned to regular
roles to define the permissions of the
corresponding role. This mapping
replaces the task-to-role assignment
mapping tra in Definition 1.5:

The mapping trra : RR �→ P(TT)

is called task-to-regular role assign-
ment. For trra(r) = Tr , we call r ∈
RR regular role and Tr ⊆ TT is called
the set of tasks assigned to r. The
mapping trra−1 : TT �→ P(RR) re-
turns the set of regular roles a par-
ticular task is assigned to. Further,
trra implies a mapping task owner-
ship (town) which allows to deter-
mine all tasks that are assigned to a
particular role (see Definition 1.5).

6. Task types can be defined as being
delegable. Only delegable tasks can
be assigned to delegation roles. Thus,
a subject can delegate a task by as-
signing this task to a delegation role:

The mapping trdel : DR �→
P(DTT) is called task-to-role dele-
gation. For trdel(dr) = DTdr , we call
dr ∈ DR delegation role and DTdr ⊆
DTT is called the set of delegated
tasks assigned to dr. The mapping
trdel−1 : DTT �→ P(DR) returns the
set of delegation roles a particular
delegable task is assigned to.

7. A duty defines an action that must
be performed by a certain subject
in order to comply with legal or
organizational regulations. In a busi-
ness process context, each duty is
associated with a task (Schefer and
Strembeck 2011a):

The mapping dta : TT �→
P(DUT) is called duty-to-task as-
signment. For dta(t) = DUx , we call
t ∈ TT task type and DUx ⊆ DUT is
called the set of duties assigned to this
task type.

8. Delegable tasks can only be dele-
gated, if all associated duties are also
delegable: ∀tx ∈ trdel(dr) : ∀du ∈
dta(tx) : du ∈ DDUT .

9. Regular roles are assigned to sub-
jects. Thereby, subjects acquire the
rights to execute the corresponding
tasks and duties. This mapping re-
places the role-to-subject assignment
mapping rsa in Definition 1.2:

The mapping rrsa : S �→ P(RR)

is called regular role-to-subject as-
signment. For rrsa(s) = RRs, we call
s ∈ S subject and RRs ∈ RR the set of
regular roles owned by s. The map-
ping rrsa−1 : RR �→ P(S) returns all
subjects assigned to a regular role.
Further, rrsa implies a mapping role-
ownership rown, which allows to
determine all roles that are assigned
to a particular subject.

10. Delegation roles are assigned to del-
egatees who are subsequently autho-
rized and responsible to perform the

corresponding delegated tasks and
duties:

The mapping drsa : S �→ P(DR)

is called delegation role-to-subject
assignment. For drsa(s) = DRs, we
call s ∈ S delegatee and DRs ∈ DR
the set of delegation roles owned by s.
The mapping drsa−1 : DR �→ P(S)

returns all delegatees assigned to a
delegation role.

11. For each task type, we can create an
arbitrary number of respective task
instances via the task instantiation
mapping ti (see Definition 1.6). Sim-
ilarly, each duty type is instantiated
by a number of duty instances:

The mapping dui : (DUT ×
PI) �→ P(DUI) is called duty instan-
tiation. For dui(duT,pI) = DUi, we
call DUi ⊆ DUI set of duty instances,
duT ∈ DUT is called duty type and
pI ∈ PI is called process instance.

12. The executing-subject mapping es
returns the subject executing a par-
ticular task instance (see Defini-
tion 1.3). The subject responsi-
ble for discharging a duty is called
the responsible subject of this duty
instance:

The mapping res : DUI �→ S is
called responsible-subject mapping.
For res(du) = s, we call s ∈ S the re-
sponsible subject and du ∈ DUI is
called discharged duty instance.

13. Within the same process instance,
a subject executing a task is also
responsible for discharging all
associated duties:

∀du ∈ dta(t1),pi ∈ PI :
∀tx ∈ ti(t1,pi),dux ∈ dui(du,pi):
es(tx) = res(dux)

14. The role used to actually execute a
certain task instance is called the
executing-role er of this instance (see
Definition 1.4). The role being re-
sponsible for actually discharging a
certain duty instance is called the
responsible-role of this instance:

The mapping rer : DUI �→ R is
called responsible-role mapping. For
rer(du) = r we call r ∈ R the re-
sponsible role and du ∈ DUI is called
discharged duty instance.

3 Identifying and Resolving
Delegation Conflicts

Due to the immanent complexity of
process-related delegation models, sev-

220 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

Fig. 3 General process of identifying conflicts and conflict resolutions

Table 1 Connection between the formal consistency requirements and the
algorithms

Delegation conflict Consistency requirement

Creator conflict Definition 4.3

Delegable task conflict Definition 4.6

Delegable duty conflict Definition 4.8

Delegator task ownership (town) conflict Definitions 4.6 and 4.9

Delegator role ownership (rown) conflict Definitions 4.3 and 4.9

Task-assignment SME conflict Definitions 1.8, 2.8, and 4.5

Role-assignment SME conflict Definitions 1.8, 2.9, and 4.5

SB delegation conflict Definitions 1.8, 2.3, 2.4, 3.2, and 4.5

RB delegation conflict Definitions 1.8, 2.3, 2.4, 3.3, and 4.5

SB duty delegation conflict Definitions 1.8, 4.5, 4.7, and 4.14

RB duty delegation conflict Definitions 1.8, 4.5, 4.7, and 4.14

Self-delegation conflict Definitions 4.1 and 4.2

Cyclic delegation conflict Definition 4.2

Temporary delegation role conflict Definition 4.4

eral types of potential conflicts may oc-
cur. In our delegation model, we identi-
fied 14 potential conflicts which need to
be checked when delegating roles, tasks,
or duties in order to prevent invalid task
assignments. Figure 3 shows an UML ac-
tivity diagram that depicts the general
process we applied to identify the differ-
ent conflicts and conflict resolutions. In
particular, we first identify the operations
that change a (consistent) RBAC model
(such as adding new task-to-role assign-
ment relations or new constraints). Next,
we identify the consistency requirements
that have to be applied when using the
respective change operation. Based on
these consistency requirements we then
identify potential consistency violations
and derive corresponding conflicts. In the
final step, we define resolution strategies
for each of the conflicts. These steps are
repeated for each change operation.

Thus, each of the conflicts we iden-
tified directly relates to the consistency
requirements for process-related delega-
tion models (see Sect. 2.2). Most of
these consistency requirements were pre-
viously identified by other researchers
(see, e.g., Botha and Eloff 2001; Cramp-
ton and Khambhammettu 2008a, 2008b;
Strembeck and Mendling 2011; Zhang
et al. 2003b). Table 1 shows the connec-
tion between different delegation con-

flicts and the corresponding formal con-
sistency requirement(s). A formal de-
scription of the resolution strategies is
provided in Online-Appendix A.

Below, each potential delegation con-
flict and corresponding resolution strate-
gies are discussed in detail. The con-
flicts can be detected by applying the al-
gorithms presented in Sect. 4 and can
be resolved by applying one of 21 pre-
defined resolution strategies. These res-
olutions prevent inconsistent delegation
assignments or runtime allocations. For
most of the conflicts, several alterna-
tive resolutions are applicable to resolve
the conflict. The decision on which of
the possible resolutions should be ap-
plied usually involves human judgment
as it highly depends on the respective
organizational context and on the de-
sired RBAC configuration. In Online-
Appendix A, all conflict resolutions are
defined with respect to the formal defi-
nitions of process-related RBAC delega-
tion models (see Sect. 2 and Strembeck
and Mendling 2010, 2011).

3.1 Identifying and Resolving
Delegability Conflicts

Creator conflict: A creator conflict exists
if a subject tries to delegate to a delega-
tion role which he/she has not created.

Only the creator of a delegation role can
delegate to it and assign delegatees (see
Definition 4.3). For example, in Fig. 4a
subject s1 tries to delegate task tx to del-
egation role dry . tx is delegable which is
visualized in Fig. 4a by an arrow attached
to the task-symbol including the letter D.
However, s1 is not the creator of dry .

Resolutions to creator conflicts: To re-
solve this conflict, we can delegate the
task to one of the delegator’s delega-
tion roles (see Resolution 1 in Online-
Appendix A). As an alternative, the con-
flict can be resolved by first removing the
respective delegation role. Then the del-
egator can create a new delegation role
with the same name and is now able to
delegate to it (see Resolution 2 in Online-
Appendix A). In Fig. 4a, s1 can delegate
task tx to one of its delegation roles drz

(see Fig. 4a and Resolution 1). Alterna-
tively, dry is removed. Subsequently, s1

can create a new delegation role named
dry and delegates task tx to dry .

Delegable task conflict: A delegable
task conflict arises if a subject tries to del-
egate a task which is not defined as dele-
gable. In Fig. 4b, task tx cannot be dele-
gated to delegation role dry , because tx is
not delegable. Similarly, this conflict can
occur if a delegator tries to delegate a role
and one of the tasks assigned to this role
is not delegable.

Resolutions to delegable task conflict:
This conflict can only be resolved by
defining the task(s) that should be del-
egated as delegable (see Fig. 4b and
Resolution 3).

Delegable duty conflict: A delegable
duty conflict exists if a subject tries to
delegate a task which is associated with
a non-delegable duty. Duties always need
to be discharged by the subject execut-
ing the corresponding task. Thus, if a task
is delegated, the corresponding duty also
needs to be delegable. This conflict can
also occur if a delegator tries to delegate
a role and one of the tasks assigned to
this role is associated to a non-delegable
duty. In Fig. 4c, task tx can not be dele-
gated to delegation role dry , because the
duty dux associated to tx is not defined as
delegable.

Business & Information Systems Engineering 4|2014 221

BISE – RESEARCH PAPER

Fig. 4 Resolving creator (a),
delegable task (b), and
delegable duty (c) conflicts

Fig. 5 Resolving delegator
town (a) and delegator
rown (b) conflicts

Resolutions to delegable duty conflict:
This conflict can be resolved by defin-
ing the relevant duties as delegable (see
Resolution 4). Alternatively, the conflict-
ing duties could be removed to resolve
the conflict (see Resolution 5). However,
this resolution will rarely be applicable in
real-world scenarios and is thus only pre-
sented for the sake of completeness. In
Fig. 4c, tx can be delegated if the associ-
ated duty dux is defined as delegable or if
dux is deleted.

3.2 Identifying and Resolving
Ownership Conflicts

Delegator task ownership (town) con-
flict: A delegator town conflict occurs if
a subject tries to delegate a task which
he/she is not assigned to via its regular
role-ownership assignments. A subject
can only delegate tasks and roles which
he/she owns directly or transitively. In
Fig. 5a, subject s1 tries to delegate task
tx to its delegation role dry . However,

none of the regular roles owned by s1 is
assigned to tx .

Resolutions to delegator town con-
flicts: The conflict can be resolved by as-
signing the task to one of the regular
roles owned by the delegator (see Reso-
lution 6). Alternatively, the delegator can
be assigned to one of the regular roles
owning the corresponding task (see Res-
olution 7). In Fig. 5a, s1 can delegate tx
after assigning tx to the regular role rr1
which is owned by s1. Alternatively, regu-
lar role rr2 owning tx can be assigned to
the delegator s1.

Delegator role ownership (rown) con-
flict: A delegator rown conflict occurs if
a subject tries to delegate a role which
he/she is not assigned to. In Fig. 5b, sub-
ject s1 tries to delegate the regular role rrj
to its delegation role dry by assigning rrj
as junior-role of dry . However, s1 is not
assigned to rrj.

Resolutions to delegator rown con-
flicts: The conflict can be resolved by as-
signing the delegator (directly or transi-

tively) to the role he/she tries to dele-
gate. In Fig. 5b, s1 is assigned to rrj in
order to be able to delegate it to dry (see
Resolution 8).

3.3 Identifying and Resolving SME
Conflicts

Task-assignment SME conflict: A task-
assignment SME conflict may occur if a
new task-to-role or role-to-role delega-
tion would result in the assignment of
two SME tasks to the same role. Fig-
ure 6a depicts an example where a del-
egation role dry owns a task ty which is
defined as SME to another task tx . Thus,
delegating tx to dry would result in a
task-assignment conflict.

Resolutions to task-assignment SME
conflicts: To avoid the task-assignment
SME conflict in Fig. 6a, the conflicting
SME constraint between the two task
types can be removed or changed into
a DME constraint (see Resolutions 9

222 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

Fig. 6 Resolving task- (a) and role-assignment (b) SME conflicts

Fig. 7 Resolving SB/RB (a) and SB/RB duty (b) delegation conflicts

and 10). Alternatively, task ty can be re-
voked from dry , or the conflicting task
ty can be deleted (see Resolutions 11
and 12). Note that some of these resolu-
tions, such as removing a constraint or
a task, will rarely be applicable in real-
world scenarios and are thus primarily
presented for the sake of completeness.

Role-assignment SME conflict: A role-
assignment SME conflict arises if a task-
to-role or role-to-role delegation would
result in the assignment of two SME tasks
to the same subject. As a consequence,
the delegatee would be authorized to per-
form two SME tasks. Figure 6b shows an
example, where the delegation of task tx

to the delegation role dry would result in
a role-assignment conflict because dele-
gatee s1 would then be authorized to per-
form the two SME tasks tz and tx . Sim-
ilarly, when delegating a role to a dele-
gation role or when assigning a delegatee
to a delegation role, we need to check for
role-assignment conflicts.

Resolutions to role-assignment SME
conflicts: To avoid a role-assignment

SME conflict, the same resolutions as for
task-assignment conflicts can be applied
(see Resolutions 9–12). In addition, Res-
olution 13 can be applied by revoking
the conflicting assignment between reg-
ular role rrz and subject s1 (see Fig. 6b).
Moreover, the conflict can (theoretically)
be resolved by removing the conflicting
subject s1 which is assigned to the two
SME tasks (see Resolution 14).

3.4 Identifying and Resolving Binding
Conflicts

SB delegation conflict: A SB delegation
conflict exists if a subject tries to delegate
a task which has a subject-binding to one
or more non-delegable task(s). However,
subject-bound tasks always have to be
performed by the same subject. Thus,
if a task is delegated, all subject-bound
tasks also need to be assigned to the same
delegation role. Otherwise, the SB con-
straint cannot be fulfilled. In Fig. 7a,
a SB constraint is defined on tx and ty .
Therefore, the subject performing tx also

has to perform ty . When delegating tx to
dry a SB conflict arises, because ty is not
defined as delegable. However, to fulfill
the SB constraint, both tasks need to be
delegated to dry .

Resolutions to SB delegation con-
flicts: This conflict can be resolved by
defining all subject-bound tasks as del-
egable (see Resolution 3). Alternatively,
the conflicting task or the SB constraint
can be removed (see Resolutions 12
and 15). In Fig. 7a, tx can be delegated,
if ty is defined as delegable. Subsequently,
both tasks can be delegated to dry . The
delegation is also possible, if ty or the SB
constraint on tx and ty is removed.

RB delegation conflict: A RB delega-
tion conflict exists if a subject tries to del-
egate a task which has a role-binding to
one or more non-delegable task(s). How-
ever, role-bound tasks always have to be
performed by members of the same role.
Thus, if a task is delegated, all role-bound
tasks also need to be assigned to the same
delegation role. Otherwise, the RB con-
straint cannot be fulfilled. In Fig. 7a, a RB

Business & Information Systems Engineering 4|2014 223

BISE – RESEARCH PAPER

constraint is defined on tx and ty . There-
fore, tx and ty always have to be assigned
to the same role. When delegating tx to
dry a RB conflict arises, because ty is not
defined as delegable. However, to fulfill
the RB constraint, both tasks need to be
delegated to dry .

Resolutions to RB delegation con-
flicts: This conflict can be resolved by
defining all role-bound tasks as delegable
(see Resolution 3). Alternatively, the con-
flicting task or the RB constraint can be
removed (see Resolutions 12 and 16). In
Fig. 7a, tx can be delegated, if ty is defined
as delegable. Subsequently, both tasks can
be delegated to dry . The delegation is also
possible, if ty or the RB constraint on tx

and ty is removed.
SB duty delegation conflict: In case a

subject tries to delegate a task which has a
subject-binding to other tasks, a SB duty
delegation conflict arises, if one of the
subject-bound tasks is associated with a
non-delegable duty. In this case, the cor-
responding subject-bound task cannot be
delegated. However, to fulfill the SB con-
straint, all subject-bound tasks need to be
delegated. In Fig. 7b, a SB constraint is
defined on tx and ty . Moreover, ty is asso-
ciated with a duty duy . If subject s1 tries
to delegate tx to dry , it also has to dele-
gate all subject-bound tasks and associ-
ated duties. In this example, duy is not
delegable. Thus, a SB duty conflict arises.

Resolutions to SB duty delegation
conflicts: The conflict can be resolved
by defining the respective duty duy as
delegable (see Resolution 4). Alterna-
tively, the conflicting duty duy can be
deleted, the subject-bound task ty being
associated with duy can be deleted, or
the SB constraint can be removed (see
Resolutions 5, 12, and 15).

RB duty delegation conflict: In case a
subject tries to delegate a task which has
a role-binding to other tasks, a RB duty
conflict arises, if one of the role-bound
tasks is associated with a non-delegable
duty. In this case, the corresponding
role-bound task cannot be delegated.
However, to fulfill the RB constraint, all
role-bound tasks need to be delegated
to the same delegation role. If subject s1

tries to delegate tx to dry in Fig. 7b, it also
has to delegate all role-bound tasks and
associated duties to dry . In this example,
duy is not delegable. Thus, a RB duty
conflict arises.

Resolutions to RB duty delegation
conflicts: The conflict can be resolved
by defining the respective duty duy as

Fig. 8 Resolving self-delegation (a) and cyclic delegation (b) conflicts

Fig. 9 Resolving runtime conflicts

delegable (see Resolution 4). Alterna-
tively, the conflicting duty duy can be
deleted, the role-bound task ty being
associated with duy can be deleted, or
the RB constraint can be removed (see
Resolutions 5, 12, and 16).

3.5 Identifying and Resolving
Inheritance Conflicts

Self-delegation conflict: A self-
delegation conflict may arise when del-
egating a role to itself. In general, a
role cannot be its own junior-role (see
Fig. 8a and Strembeck and Mendling
2010, 2011).

Resolution to self-delegation con-
flicts: This conflict can be resolved by
selecting another junior- or senior-role
so that the inheritance relation is defined
between two different roles (see Fig. 8a
and Resolution 17).

Cyclic delegation conflict: A cyclic del-
egation conflict results from delegating
a role to a delegation role which is al-
ready defined as senior-role of this dele-
gation role. In particular, a role-hierarchy
must not include a cycle because all roles
within such a cyclic inheritance rela-
tion would own the same permissions
which would again render the respec-
tive part of the role-hierarchy redundant
(see Fig. 8b and Strembeck and Mendling
2010, 2011).

Resolutions to cyclic delegation con-
flicts: This conflict can be resolved by

delegating another role to this delega-
tion role which is not already part of the
same role-hierarchy (see Resolution 17).
In Fig. 8b, Resolution 17 is applied by
defining a new inheritance relation be-
tween drx and dry while keeping the ex-
isting inheritance relation between dry
and drz . Moreover, the existing inheri-
tance relation between dry and drz can be
removed before defining the inverse in-
heritance relation with drz as junior-role
of dry (see Resolution 18).

3.6 Identifying and Resolving Runtime
Conflicts

In addition to the runtime conflicts pre-
sented in Schefer et al. (2011) and Strem-
beck and Mendling (2010), one addi-
tional conflict in the context of tempo-
rary delegation roles may occur.

Temporary delegation role conflict: A
temporary delegation role conflict occurs
if the selected subject is not allowed to ex-
ecute a certain task instance because the
temporary delegation role is not valid for
the corresponding process instance. Each
temporary delegation role is only valid
for particular process instances. Thus, a
delegatee assigned to a temporary delega-
tion role is authorized to execute all del-
egated tasks only within these process in-
stances. In Fig. 9, subject s1 is assigned
to the temporary delegation role drt, and
drt is only valid for the process instance
123. However, the actual process instance

224 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

Algorithm 1 Check if it is allowed to delegate a particular task type to a particular delegation role

Name: isT2RDelegationAllowed
Input: taskx ∈ TT , droley ∈ DR, delegator ∈ S
1: if delegator �= creator(droley) then return creatorConflict
2: if taskx /∈ DTT then return delegableTaskConflict
3: if ∃ dutyx ∈ dta(taskx) | dutyx /∈ DDUT then return delegableDutyConflict
4: if � r ∈ rown(delegator) | taskx ∈ town(rr) ∧ r ∈ RR then return delegatorTownConflict
5: if ∃ tasky ∈ town(droley) | tasky ∈ sme(taskx) then return taskAssignmentSMEConflict
6: if ∃ rolez ∈ allSeniorRoles(droley) | taskz ∈ town(rolez) ∧
7: taskz ∈ sme(taskx) then return taskAssignmentSMEConflict
8: if ∃ s ∈ S | droley ∈ rown(s) ∧ rolez ∈ rown(s) ∧
9: taskz ∈ town(rolez) ∧ taskz ∈ sme(taskx) then return roleAssignmentSMEConflict
10: if ∃ tasky ∈ sb(taskx) | tasky /∈ DTT then return SBDelegationConflict
11: if ∃ tasky ∈ rb(taskx) | tasky /∈ DTT then return RBDelegationConflict
12: if ∃ tasky ∈ sb(taskx) | dutyy ∈ dta(tasky) ∧
13: dutyy /∈ DDUT then return SBDutyDelegationConflict

14: if ∃ tasky ∈ rb(taskx) | dutyy ∈ dta(tasky) ∧
15: dutyy /∈ DDUT then return RBDutyDelegationConflict

16: return true

Algorithm 2 Check if it is allowed to delegate a particular role to a delegation role

Name: isR2RDelegationAllowed
Input: junior ∈ R, senior ∈ DR, delegator ∈ S
1: if delegator �= creator(senior) then return creatorConflict
2: if junior /∈ rown(delegator) then return delegatorRownConflict
3: if junior == senior then return selfDelegationConflict
4: if ∃ taskx ∈ town(junior) | taskx /∈ DT then return delegableTaskConflict
5: if ∃ taskx ∈ town(junior) | dutyx ∈ dta(taskx) ∧
6: dutyx /∈ DDUT then return delegableDutyConflict
7: if junior ∈ DR then ∃ r ∈ rown(delegator) | taskx ∈ town(junior) ∧
8: taskx ∈ town(r) ∧ r ∈ RR else return delegatorTownConflict
9: if senior ∈ drh∗(junior) then return cyclicDelegationConflict
10: if ∃ taskj ∈ town(junior) | tasks ∈ town(senior) ∧
11: taskj ∈ sme(tasks) then return taskAssignmentSMEConflict
12: if ∃ rolex ∈ allSeniorRoles(senior) | taskx ∈ town(rolex) ∧
13: taskj ∈ town(junior) ∧ taskx ∈ sme(taskj)

14: then return taskAssignmentSMEConflict
15: if ∃ s ∈ S | senior ∈ rown(s) ∧ rolex ∈ rown(s) ∧
16: taskx ∈ town(rolex) ∧ taskj ∈ town(junior) ∧ taskx ∈ sme(taskj)

17: then return roleAssignmentSMEConflict
18: if ∃ taskx ∈ town(junior) | tasky ∈ sb(taskx) ∧
19: tasky /∈ DTT then return SBDelegationConflict
20: if ∃ taskx ∈ town(junior) | tasky ∈ sb(taskx) ∧
21: ∃ dutyy ∈ dta(tasky) ∧ dutyy /∈ DDUT then return SBDutyDelegationConflict

22: return true

is 456. Thus, s1 is not allowed to exe-
cute the delegated tasks in this process
instance.

Resolving temporary delegation role
conflicts: The conflict can be resolved
by adding the corresponding process in-
stance to the process instances a tem-
porary delegation role is valid for (see
Resolution 19). Another solution is to
change a temporary delegation role into
a permanent delegation role (see Reso-
lution 20). Subsequently, delegatees are
authorized to perform all instances of

the delegated tasks. In Fig. 9 Resolu-
tion 19 is applied by defining that del-
egation role drt now is also valid for
the process instance 456. As an alterna-
tive, drt can be changed into a perma-
nent delegation role. Alternatively, one
can allocate an executing subject that ac-
tually owns the permission to perform
the respective task (see Resolution 21).
Subject s2 is authorized to perform in-
stances of tx . Thus, we can allocate s2 as
executing subject for this particular task
instance.

4 Algorithms for Detecting
Delegation Conflicts

In this Section, we provide algorithms to
detect the delegation conflicts introduced
in Sect. 3 in process-related RBAC mod-
els at design-time and runtime. To sup-
port a systematic conflict handling, we
suggest to perform the following three
steps. First, one needs to detect a conflict
when delegating tasks, duties, or roles or
when assigning a subject to a delegation

Business & Information Systems Engineering 4|2014 225

BISE – RESEARCH PAPER

Algorithm 3 Check if it is allowed to assign a particular delegation role to a certain delegatee

Name: isR2SDelegationAllowed
Input: drolex ∈ DR,delegatee,delegator ∈ S
1: if delegator �= creator(drolex) then return creatorConflict
2: if ∃ roley ∈ rown(delegatee) | tasky ∈ town(roley) ∧
3: taskx ∈ town(drolex) ∧ tasky ∈ sme(taskx) then return roleAssignmentSMEConflict
4: return true

Algorithm 4 Check if a particular task instance that is executed in a certain process instance can be allocated to a specific delegatee

Name: isDelegateeAllocationAllowed
Input: drole ∈ DRT, delegatee ∈ S, tasktype ∈ TT , processtype ∈ PT ,

processinstance ∈ pi(processtype), taskinstance ∈ ti(tasktype,processinstance)

1: if ∃ instancey ∈ ti(typey,processinstance) | ar(delegatee) = drole ∧
2: processinstance /∈ drpi(drole) then return temporaryDelegationRoleConflict
3: return true

role. After detecting a conflict, we have to
decide on how to resolve this conflict, i.e.,
decide which resolution strategy to apply.
After applying the resolution strategy, the
requested delegation can be performed.

Algorithms 1–3 check the design-
time consistency of a process-related
RBAC delegation model before defin-
ing a new task-to-role, role-to-role, or
role-to-subject delegation relation. Algo-
rithm 4 checks the runtime consistency
of a process-related RBAC delegation
model. In particular, it checks, if a tem-
porary delegation role authorizes a sub-
ject to perform a delegated task in a cer-
tain process instance. These algorithms
complement the set of algorithms pre-
sented in Schefer et al. (2011) and Strem-
beck and Mendling (2010) which de-
tect potential conflicts of process-related
RBAC models not related to delegation. If
a delegation conflict is detected, the algo-
rithms presented below return the name
of the respective conflict.

5 A UML Extension for Modeling
Process-Related Delegation
Models

An organization’s business processes
and software systems are often mod-
eled via graphical modeling languages.
The Unified Modeling Language (UML;
OMG 2011b) offers a comprehensive
and well-defined modeling framework
and is the de facto standard for model-
ing and specifying information systems.
The UML’s main intention is to cap-
ture modeling artifacts throughout the
whole development lifecycle with the
same modeling language OMG (2011b).
The UML metamodel builds upon the

OMG Meta Object Facility (MOF OMG
2011a) and defines the abstract syntax of
all UML diagram types. Modeling sup-
port for the delegation of roles, tasks,
and duties via a standard notation can
help to bridge the communication gap
between software engineers, security
experts, experts of the application do-
main, and other stakeholders (see, e.g.,
Mouratidis and Jürjens 2010). Several
approaches already exist that consider
different kinds of security properties in a
UML context (see, e.g., Basin et al. 2006;
Jürjens 2005; Rodriguez et al. 2006;
Rodriguez and de Guzman 2007).

UML2 activity models offer a process
modeling language that allows to model
the control flows and object flows be-
tween different actions. The main ele-
ment of an activity diagram is an activ-
ity. Its behavior is defined by a decom-
position into different actions. A UML2
activity thus models a process while the
actions that are included in the activ-
ity can be used to model tasks (for de-
tails on UML2 activity models, see OMG
2011b). However, sometimes UML dia-
grams can not provide all relevant as-
pects of a specification. Therefore, there
is a need to define additional constraints
about the modeling elements. The Ob-
ject Constraint Language (OCL) provides
a formal language that enables the def-
inition of constraints on UML models
(OMG 2014). We apply the OCL to de-
fine additional delegation-specific con-
straints for our UML extension. In par-
ticular, the OCL invariants defined in
Sect. 5.2 ensure the consistency and cor-
rectness of UML models using our new
modeling elements.

The UML standard basically provides
two options to adapt its metamodel to

a specific area of application (OMG
2011b): (a) defining a UML profile speci-
fication using stereotypes, tag definitions,
and constraints. A UML profile must
not change the UML metamodel but can
only extend existing UML meta-classes
for special domains. Thus, UML profiles
are not a first-class extension mechanism
(see OMG 2011b, p. 660); (b) extend-
ing the UML metamodel, which allows
for the definition of new elements with
customized semantics.

In this paper, we apply the second op-
tion (extending the UML metamodel)
because the newly defined modeling el-
ements for process-related delegation re-
quire new semantics which are not avail-
able in the UML metamodel. Thus,
we introduce the BusinessActivityDele-
gations extension for the UML meta-
model which is designed for modeling
the delegation of roles, tasks, and du-
ties based on the formal metamodel def-
initions presented in Sect. 2. For this
purpose, we extend the BusinessActivi-
ties package (Strembeck and Mendling
2011), which provides UML modeling
support for process-related RBAC mod-
els. We also implemented the extended
metamodel as a delegation extension to
the BusinessActivity library and runtime
engine (see Sect. 7).

5.1 UML Metamodel Overview

Based on the formal CIM-layer meta-
model for process-related RBAC delega-
tion models presented in Sect. 2, Fig. 10
presents our corresponding extension to
the UML at the PIM layer. In our UML
extension, a BusinessActivity is a special
UML Activity (see Fig. 10). In addition
to our newly introduced elements, it can

226 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

Fig. 10 UML metamodel extension BusinessActivityDelegations for Activity diagrams

Fig. 11 Visualizing (a) delegation roles
and (b) delegator relations

include all elements available for ordi-
nary UML Activities. A BusinessAction
corresponds to a task in a business pro-
cesses and comprises all permissions to
perform the respective task (see Strem-
beck and Mendling 2011 for further de-
tails on BusinessActivities and Business-
Actions). A Duty is a special UML Classi-
fier (see Fig. 10) and is used to model that
an action must be performed by a certain
Subject (Schefer and Strembeck 2011a).
The link between Duties and Business-
Actions assures that a Subject being as-
signed to a Duty also receives all permis-
sions to perform these Duties. Roles and
Subjects are specialized UML Classifiers
Strembeck and Mendling (2011) which
are linked to BusinessActions and Duties
(see Fig. 10). Furthermore, a Duty may
be linked to a DutyTimeConstraint which
is a specialized UML TimeConstraint.
If a DutyTimeConstraint has expired, a

Compensation Action is triggered which is
defined as stereotype of the Action meta-
class (see Schefer and Strembeck 2011a
for further details).

A DelegationRole is a special type of
Role which is assigned to a set of dele-
gated Roles, BusinessActions, and/or Du-
ties (see Fig. 10). A DelegatorRelation is
a special UML DirectedRelationship and
indicates that a certain Subject acts as
a delegator for a certain DelegationRole.
Only delegators may delegate Roles, Busi-
nessActions, or Duties to Delegation-
Roles (see OCL Constraint 1 in Sect. 5.2).
Figure 11 illustrates presentation options
to visualize delegation roles and delega-
tor relations. Note that these relations
are formally defined through our UML
metamodel extension and therefore ex-
ist independent of their actual graphical
representation.

DelegationRoles are assigned to delega-
tees which thereby are authorized to per-
form the respective BusinessActions and
Duties (see OCL Constraint 2). A dele-
gator can delegate a Role by defining this
Role as junior-role to one of his or her
DelegationRoles. All BusinessActions and
Duties assigned to this Role need to be
delegable (see below). Note that Delega-
tionRoles must not have senior regular

Roles to avoid invalid permission inher-
itance (see OCL Constraint 3). For dele-
gating a BusinessAction, the delegator as-
signs the BusinessAction to the respec-
tive DelegationRole. Only if a Business-
Action is delegable, it can be delegated to
a DelegationRole (see OCL Constraints 4
and 6). To realize delegation of Duties in
UML models, a Duty also needs to be de-
fined as being delegable (see OCL Con-
straints 5, 7, and 9). After assigning a del-
egatee, the delegator loses his obligation
to perform this Duty. Yet, a review duty
can be defined (Schaad and Moffett 2002)
which obliges the delegator to control
the proper enforcement of his delegated
Duties (see OCL Constraints 8 and 9).

To consider the aspect of permanence
in delegation (Barka and Sandhu 2000b),
our DelegationRoles can either be de-
fined for temporary or for permanent
delegation, i.e., for a single or for all in-
stances of a business process (see OCL
Constraints 10 and 11). Furthermore, we
support single- and multi-step delegation
for BusinessActions and Duties. Single-
step delegation means that a delegated
BusinessAction or Duty can not be fur-
ther delegated by the delegatee (Barka
and Sandhu 2000b). This is achieved
by defining an attribute called isDele-
gated for each BusinessAction and for

Business & Information Systems Engineering 4|2014 227

BISE – RESEARCH PAPER

OCL Constraint 1 The delegator of a Duty, a BusinessAction, or a Role needs to be the Subject who is directly assigned to the
respective delegation unit.

context Subject
inv: self.delegatorRelation->forAll(d |

d.delegationRole.delegatedDuty->forAll(dd |
dd.role->exists(r |

r.roleToSubjectAssignment->exists(rsa |
rsa.subject = self))))

inv: self.delegatorRelation->forAll(d |
d.delegationRole.businessaction->forAll(ba |

ba.role->exists(r |
r.roleToSubjectAssignment->exists(rsa |

rsa.subject = self))
or
ba.transitiveTaskOwner->exists(to |

to.roleToSubjectAssignment->exists(torsa |
torsa.subject = self))))

inv: self.delegatorRelation->forAll(d |
d.delegationRole.seniorAssignment->notEmpty() implies

d.delegationRole.seniorAssignment->forAll(sa |
if sa.juniorRole.oclIsTypeOf(Role) then

sa.juniorRole.roleToSubjectAssignment->exists(rsa | rsa.subject = self)
or
sa.juniorRole.transitiveRoleOwner->exists(tro | tro = self)

else true endif))

OCL Constraint 6 Each BusinessAction defines an attribute called “isDelegated” stating if a special BusinessAction has already
been delegated or not. If it has already been delegated, it cannot be delegated further (single-step delegation, see Barka and Sandhu
2000b).

context BusinessAction
inv: self.instanceSpecification->forAll(i | i.slot->exists(s | s.definingFeature.name = isDelegated))
inv: self.instanceSpecification->forAll(i |

let baid : Slot = i.slot->select(s | s.definingFeature.name = isDelegated) in
let bdgb : Slot = i.slot->select(d | d.definingFeature.name = delegable) in
if baid.value = true then bdgb.value = false
else true endif)

OCL Constraint 11 If a DelegationRole is intended for temporary delegation only (isTemporary=true), it defines an attribute called
“relatedProcessInstance” to ensure that the respective DelegationRole can only be used in the defined process instance.

context DelegationRole
inv: self.instanceSpecification->forAll(i | i.slot->exists(s | s.definingFeature.name = relatedProcessInstance))
inv: self.instanceSpecification->forAll(i |

self.businessAction->exists(ba |
ba.activity.instanceSpecification->exists(a |

let drit : Slot = i.slot->select(si | si.definingFeature.name = isTemporary) in
if drit.value = true then

let rpi : Slot = i.slot->select(so | so.definingFeature.name = relatedProcessInstance) in
let apid : Slot = a.slot->select(sa | sa.definingFeature.name = processID) in

rpi.value = apid.value
else true endif)))

each Duty. The isDelegated attribute is
set to true as soon as the respective
BusinessAction or Duty has been dele-
gated. If a BusinessAction’s or a Duty’s
isDelegated-attribute is set to true, its del-
egable-attribute is set to false (see OCL
Constraints 6 and 7). One advantage of
single-step delegation is that the dele-
gator who might be obliged to super-
vise the enforcement keeps control about
who is responsible for actually perform-
ing the delegated BusinessAction or dis-
charging the delegated Duty. However,
multi-step delegation can easily be ac-

tivated by using OCL Constraints 15
and 16 instead.

5.2 OCL Constraints

Often a structural UML model cannot
capture all types of constraints which
are relevant for describing a target do-
main. Thus, additional constraints can
be defined, for example, by using a con-
straint expression language, such as the
OCL (OMG 2014). In this paper, we use
OCL invariants to define the semantics by
encoding delegation-specific constraints.
For the sake of readability, this Section

only shows three example OCL invari-
ants. The complete list of OCL invari-
ants for the Business Activity Delega-
tions extension can be found in Online-
Appendix B. In addition, Table 2 gives an
overview of how each of the definitions
from Sect. 2.2 is mapped to our UML ex-
tension for Business Activity Delegation
Models.

5.3 Example for Business Activity
Delegation Models

In Fig. 12, the credit application process
from Fig. 1 is extended by including the

228 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

Table 2 Consistency between generic metamodel and UML extension

Generic Definition Covered through

Definition 4.1: rrh : RR �→ P(RR) Metamodel extension: RoleToRoleAssignment relation (see Fig. 10 and Strembeck and
Mendling 2011)

Definition 4.2: drh : DR �→ P(R) Metamodel extension: RoleToRoleAssignment relation (see Fig. 10) and OCL Constraint 3

Definition 4.3: creator(dr) : DR �→ S Metamodel extension: DelegatorRelation metaclass (see Fig. 10) and OCL Constraint 1

Definition 4.4: drpi : DRT �→ P(PI) OCL Constraints 10 and 11

Definition 4.5: trra : RR �→ P(TT) Metamodel extension: Association between Role and BusinessAction (see Fig. 10 and
Strembeck and Mendling 2011)

Definition 4.6: trdel : DR �→ P(DTT) Metamodel extension: Association between Role and BusinessAction (see Fig. 10) and OCL
Constraints 4, 6, and 15

Definition 4.7: dta : TT �→ P(DUT) Metamodel extension: Association between Duty and BusinessAction (see Fig. 10)

Definition 4.8:
∀tx ∈ trdel(dr) : ∀du ∈ dta(tx) : du ∈ DDUT

OCL Constraints 5, 7, 8, 9, and 16

Definition 4.9: rrsa : S �→ P(RR) Metamodel extension: RoleToSubjectAssignment relation (see Fig. 10 and Strembeck and
Mendling 2011)

Definition 4.10: drsa : S �→ P(DR) Metamodel extension: RoleToSubjectAssignment relation (see Fig. 10) and OCL
Constraint 2

Definition 4.11: dui : (DUT × PI) �→ P(DUI) Implicitly defined via our metamodel extension and the specification of UML activity
models (see Fig. 10) and OMG (2011b), Schefer and Strembeck (2011a)

Definition 4.12: res : DUI �→ S OCL Constraint 12

Definition 4.13: ∀du ∈ dta(t1),pi ∈ PI : ∀tx ∈
ti(t1,pi),dux ∈ dui(du,pi) : es(tx) = res(dux)

OCL Constraint 13

Definition 4.14: rer : DUI �→ R OCL Constraint 14

Fig. 12 Extended credit application process

Business & Information Systems Engineering 4|2014 229

BISE – RESEARCH PAPER

Fig. 13 Multi-method research design

new modeling constructs introduced in
Sect. 5.1. The process in Fig. 12a includes
five actions, three of which are defined
as BusinessActions. The BusinessActions
are associated with Duties: the Business-
Action Check credit worthiness is associ-
ated with the Duty Check applicant rat-
ing, the BusinessAction Negotiate contract
with the Duty Fulfill precontractual duties,
and the BusinessAction Approve contract
with the Duty Review final contract. In
addition, the Compensation Action Reas-
sign Duty is triggered if the Duty Check
applicant rating is not discharged in time.

Figure 12b presents the Duty Check
applicant rating which is connected to
the BusinessAction Check credit worthi-
ness. It is associated with a DutyTime-
Constraint and a Compensation Action.
The DutyTimeConstraint expresses that
the Duty Check applicant rating needs
to be completed within three time units
(e.g., days) after the corresponding Busi-
nessAction has been started. Otherwise,
the Compensation Action Reassign Duty
is executed.

The responsibility for the Duties is il-
lustrated in Fig. 12c showing the Role
BankClerk which is assigned to the three
BusinessActions and the associated Du-
ties defined in the credit application pro-
cess. Thus, a Subject assigned to the
BankClerk role is responsible for per-
forming these Duties and related Busi-
nessActions. In this example, the Subject
M. Meyer is assigned to the BankClerk
role and therefore also needs to dis-
charge the associated Duties. M. Meyer
decides to delegate her Duty Check appli-
cant rating to her summer intern J. Smith.
For this purpose, she creates a perma-
nent DelegationRole SummerIntern and
assigns the Duty to the DelegationRole.
Subsequently, she assigns the Subject J.

Smith to her DelegationRole SummerIn-
tern. J. Smith is now authorized and re-
sponsible for discharging the Duty Check
applicant rating when performing the
BusinessAction Check credit worthiness,
until either the Duty is revoked from the
DelegationRole or he loses his assign-
ment to the DelegationRole.

6 Case Study on Modeling
Process-Related RBAC Delegation
Models

To evaluate our approach with regard
to its practical applicability, we con-
ducted a case study applying our UML
extension on real-world processes. Our
case study is based on a collection of real-
world process models we retrieved from
a large Austrian school center. The selec-
tion consists of about 30 processes, which
were collected by members of the school
during a process management initiative.
The control flow of some processes was
graphically visualized depicting the se-
quence of tasks and corresponding au-
thorized/responsible persons. However,
these processes were visualized using a
non-standard ad hoc graphical notation.
Furthermore, most of the processes were
described in a detailed textual/tabular
listing of activities with varying level of
granularity. The process descriptions in-
cluded references to legal requirements
(e.g., certain paragraphs in the Austrian
law concerning teaching in schools) and
other internal or external regulations.

In the case study presented in this pa-
per, we remodeled the processes that in-
cluded information on delegation scenar-
ios via our UML extension (see Sect. 5).
This case study is part of a larger qual-
itative multi-method study presented in
Schefer-Wenzl et al. (2013). In particular,

we adopted a sequential multi-method
research design with two subsequent re-
search phases and two different research
instruments (see Fig. 13). The two guid-
ing research questions were: Which are
the barriers to adopting our UML exten-
sions by domain modelers having a ba-
sic background in UML activity mod-
eling (RQ1)? Which are the barriers to
using the process models based on our
UML extensions for non-technical, non-
security stakeholders in modeled organi-
zations (RQ2)?

As for RQ1, we designed interpretative
case studies because we wanted to ad-
dress RQ1 using non-trivial process en-
gineering tasks. RQ2 would then be cov-
ered by subsequent semi-structured in-
terviews which would allow us to col-
lect data concerning the communicability
as perceived by important stakeholders.
In addition, the interviews would permit
clarifying critical model details for the re-
spondents to improve the quality of the
answers. For further details on the whole
study, please refer to Schefer-Wenzl et al.
(2013).

In Fig. 14, an example process from the
case study on the UML extension pre-
sented in this paper is illustrated. The
complete set of processes modeled in
this case study is documented in Vondal
(2012). Figure 14a depicts a BusinessAc-
ticity that models the process of organiz-
ing the school’s open day. This process
is part of a larger set of processes deal-
ing with the organization of the open day.
All new modeling elements introduced in
the Delegations extension are used in this
example process. The process depicted
in Fig. 14a includes six BusinessActions.
Two of these BusinessActions are associ-
ated with duties. Moreover, the process
defines two subject-binding constraints
between “Schedule date” and “Announce

230 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

Fig. 14 Example process in an Austrian school

Table 3 Questions from the semi-structured interviews

Q1 Do the process models provide added value for the school? If yes, in how far can the school/members of the school benefit from the
extended process models?

Q2 How will the extended process models potentially be used in the school?

Q3 What do you think about our approach of integrating process models and related security aspects? Advantages/Disadvantages?

Q4 Do you have difficulties in understanding different parts of the processes? If yes, which parts are easy to understand and which parts are
difficult or not comprehensible?

Q5 Do you have any suggestions on how the graphical representation of the processes can be improved?

date” as well as between “Check time-
liness of schedule” and “Adapt sched-
ule”. In Fig. 14b, roles and correspond-
ing task and duty assignments are shown.
We identified three roles for the open day
organization process. For example, the
headmaster of this school is permitted to
perform five of the tasks in this process,
two of these tasks are inherited from a
junior-role.

Figure 14c illustrates which tasks and
duties of the open day organization pro-
cess a headmaster is allowed to delegate to
his/her substitute headmaster. Note that
these tasks and duties need to be defined
as delegable before we can delegate them
(see Sects. 2 and 5). The headmaster may
delegate two of the tasks to his/her dele-
gation role substitute headmaster. More-
over, when delegating a task being associ-
ated to a duty, this duty also has to be del-
egated (see Sects. 2 and 5). Subsequently,
all delegatees being assigned to the dele-

gation role substitute headmaster are au-
thorized to perform the delegated tasks
and duties.

After remodeling the processes via our
UML extension, we evaluated the remod-
eled process diagrams of the case study by
performing semi-structured interviews
with three members of the school, in-
cluding the headmaster, one teacher, and
one member of the administrative staff.
This approach was chosen because in-
terviews are one of the most impor-
tant methods in case study research (see,
e.g., Runeson and Höst 2009). Moreover,
for qualitative case studies it is recom-
mended to choose subjects from different
parts of the organization to involve dif-
ferent roles in the interviews (Corbin and
Strauss 2008).

The interview was carefully designed
using the guidelines from Hove and Anda
(2005). It consisted of five main open-
ended questions. Each interview varied

between 20 and 25 minutes in length.
The answers were recorded by using field
notes which were then subsequently an-
alyzed by the interviewer. Table 3 de-
tails the main questions asked in the
interviews.

In the interviews, two advantages of
the visually modeled processes were com-
municated: First, the headmaster empha-
sized that new employees who are not
familiar with school procedures would
now have a comprehensive and easy-to-
understand, diagram-based documenta-
tion of key processes and related delega-
tion concerns at hand. This would have
the potential of facilitating work tasks
and communication with other school
members during the first weeks after
joining the school. This opinion may
also support the frequently cited con-
jecture that models employing a pro-
cess flow metaphor are suitable commu-
nication instruments for non-technical

Business & Information Systems Engineering 4|2014 231

BISE – RESEARCH PAPER

domain experts (see, e.g., Dumas et al.
2012). In addition, before the case study
was performed, only a few processes were
depicted using an ad hoc (i.e., non-
standard) visual notation. Most processes
were described via textual documents in
varying degrees of detail. The state of
the organization’s process descriptions
was therefore inconsistent and inhomo-
geneous. Moreover, the interview part-
ners noted that the access-control en-
riched process models would improve
the general awareness among the school
members of how closely security re-
quirements are related to key organiza-
tional processes. All three members of the
school stated that the process models are
easy to comprehend (e.g., task and role
labels, basic sequencing of tasks, relations
between duties and tasks).

The case study design was aligned to
evaluating our modeling framework. As
a consequence, the study design presents
limitations to the generalizability of our
findings. An important limitation results
from the scope of a single organiza-
tion. The observations might therefore be
specific to the domain of Austrian sec-
ondary schooling. However, within this
domain, we aimed at a broad cover-
age of domain areas: the process mod-
els cover topics ranging from the school’s
process management to the emergency
evacuation procedures. Nevertheless, fu-
ture work must investigate whether the
findings hold for different branches and
different types of organizations.

In likewise manner, there are threats
to the observations from the three inter-
views. To begin with, they cannot be gen-
eralized beyond the narrow educational
domain because the interview partners
are all embedded into a single institu-
tion. There is also the risk of an in-
terviewer bias because the interviewer is
also author of the evaluated UML exten-
sions. This double role might have af-
fected the open-ended conversation of
the interviews. To minimize this risk,
the interviewer, however, tried to observe
rather than steer the conversation and
encouraged the interviewees to talk.

7 Platform Support

In order to provide runtime support for
the enforcement of process-related RBAC
delegation models at the PSM layer, we
implemented a corresponding extension
to the Business Activity library and run-
time engine. In this Section, we provide

Fig. 15 Class model of the Business Activity library and runtime engine (Strembeck
and Mendling 2011)

an overview of our platform support for
process-related RBAC delegation models
(available for download at BAL 2012).
First, we present the Business Activity
library and runtime engine.

The Business Activity library and run-
time engine is a software platform that
can manage process-related RBAC run-
time models and enforce access control
policies as well as several kinds of en-
tailment constraints (see Strembeck and
Mendling 2011). It supports all artifacts
of process-related RBAC models and
provides functions for managing corre-
sponding runtime instances. Moreover, it
automatically enforces all invariants de-
fined via OCL constraints (see Sect. 5.2).
Figure 15 shows an excerpt of the essen-
tial class relations of the Business Activity
library and runtime engine.

The Delegation package extends the
Business Activity library and runtime
engine with support for process-related
RBAC delegation models as defined in
the previous Sections. Figure 16 shows
the essential class relations of the Dele-
gation extension package. The Business
Activity library and runtime engine as
well as the Delegation extension package
are implemented via the programming
language eXtended Object Tcl (XOTcl,
see, e.g., Neumann and Sobernig 2009,
2011; Neumann and Zdun 2000). XOTcl
is an object-oriented extension of the

scripting language Tcl (Ousterhout 1990)
and is publicly available from Neumann
and Zdun (2012). XOTcl is a C-library
that can be dynamically loaded into Tcl-
compatible environments and is embed-
dable into C programs. Amongst oth-
ers, XOTcl provides a mixin mechanism
(see Zdun et al. 2007). XOTcl mixin
classes are a dynamic message intercep-
tion technique. They allow to flexibly de-
fine extension classes in addition to the
inheritance hierarchy.

XOTcl supports per-object mixins as
well as per-class mixins. Per-object mix-
ins are classes that are applied as mixins
for an individual instance of a class, while
per-class mixins are classes that are ap-
plied as mixins for a class (see Zdun et al.
2007 for details). Both XOTcl mixin con-
structs are used in the Delegation exten-
sions package to dynamically activate or
deactivate certain behavior for a class or
object (see Fig. 16).

The Business Activity library and run-
time engine in combination with the Del-
egation extension package ensures the
compliance of processes modeled via
the BusinessActivitiesDelegation exten-
sion and user-defined delegation poli-
cies. Thereby, it supports a straightfor-
ward mapping of modeling level RBAC
delegation models to the corresponding
runtime models.

232 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

Fig. 16 Class model of the
Delegation package

8 Related Work

In general, we distinguish three types of
related work for this paper. First, we have
approaches that primarily aim to inte-
grate delegation aspects into role-based
access control models. Second, a few ap-
proaches focus on the delegation of du-
ties/obligations. Third, a number of dif-
ferent delegation approaches for busi-
ness process/workflow environments ex-
ist. Many of the access control- and busi-
ness process-related approaches are com-
plementary to our work and are well-
suited to be combined with our process-
related RBAC delegation models.

Table 4 shows an overview of related
work on modeling delegation of roles,
tasks, and duties in an access control or
business process context. With respect
to the concepts and artifacts specified in
Sects. 2, 3, 4, and 5, we use a √ if a related
approach provides similar and/or com-
parable support for a certain concept,
and a � if a related approach provides
at least partial support for a particular
aspect.

In recent years, there has been much
work on various aspects of role- and
permission-based delegation. In Barka
and Sandhu (2000b), RBDM, a frame-
work for characterizing role-based del-
egation models is presented which dis-
tinguishes, for instance, between perma-
nent or temporary, partial or total, and
single- or multi-step delegation. All of
these concepts are also integrated in our

delegation model presented in this pa-
per. A formal model and some extensions
for RBDM are presented in Barka and
Sandhu (2000a). RDM2000 (Zhang et al.
2003a) is an extension of RBDM sup-
porting role-based and multi-step dele-
gation. Furthermore, a rule-based declar-
ative language is proposed to specify and
enforce policies. Similar to our approach,
separation of duty constraints are consid-
ered and corresponding tool support is
provided.

In Zhang et al. (2003b), a permission-
based delegation model (PBDM) is pre-
sented which allows for delegation of
roles and permissions. Delegation roles
are defined to delegate permissions to a
user. Most of the concepts introduced in
Zhang et al. (2003b) are also integrated
in our delegation model. Yet, support for
entailment constraints in Zhang et al.
(2003b) is limited to static separation of
duty constraints, while we also consider
binding constraints. An approach simi-
lar to Zhang et al. (2003b) is presented in
Hasebe et al. (2010), where a capability-
based delegation model (CRBAC) based
on RBAC96 (Sandhu et al. 1996) is in-
troduced to support cross-domain dele-
gation of roles and permissions in terms
of capability transfer. Compared to our
work, none of these approaches sup-
ports the delegation of duties. Some
delegation-related conflicts are only de-
tected in Zhang et al. (2003b), without
providing corresponding resolutions. Re-
cently, an approach for the model-based
specification of role-based delegation and

revocation policies via UML was intro-
duced in Sohr et al. (2012). In contrast
to our approach, Sohr et al. (2012) do
not integrate their concepts into a busi-
ness process context. Moreover, they do
not address the delegation of duties, and
do not consider binding constraints. In
addition, their modeling approach is not
based on a formal metamodel. Instead,
standard UML class and object diagrams
are used for graphically visualizing dele-
gation policies. Corresponding tool sup-
port as well as conflict detection and res-
olution handling is not provided in Sohr
et al. (2012).

Duties or obligations may also be sub-
ject to delegation. Yet, the delegation of
duties has received little attention in lit-
erature so far, although it has been iden-
tified as important phenomenon, e.g.,
in Cole et al. (2001), where different
ways of delegating obligations are dis-
cussed. In Schaad and Moffett (2002),
the delegation of obligations is addressed,
mainly motivating the reasons for dele-
gating obligations and stressing the need
for balancing authorizations and obliga-
tions. Recently, a basic delegation model
for obligations has been introduced in
Ghorbel-Talbi et al. (2010, 2011). In
this approach, different kinds of duty-
level and role-level delegations are con-
sidered, also taking contextual informa-
tion into account. However, in compar-
ison to our work none of these ap-
proaches considers the delegation of du-
ties in a business process context. More-
over, entailment constraints, correspond-

Business & Information Systems Engineering 4|2014 233

BISE – RESEARCH PAPER

Table 4 Comparison of related work

Delega-
tion of
roles

Delega-
tion of
tasks

Delega-
tion of
duties

Entailment
constraints

Conflict
detection

Conflict
resolu-
tion

Formal
metamodel
(CIM
layer)

Modeling
support
(PIM
layer)

Tool
support
(PSM
layer)

Role-based delegation models

Barka and Sandhu (2000a, 2000b) √
�

Zhang et al. (2003a) √
� � �

Shang and Wang (2008); Zhang
et al. (2003b)

√
� � �

Hasebe et al. (2010) √
�

Sohr et al. (2012) √
� �

Delegation models for obligations

Cole et al. (2001) √
Schaad and Moffett (2002) √

�

Ghorbel-Talbi et al. (2010, 2011) √ √
�

Delegation in business processes

Gaaloul and Charoy (2009);
Gaaloul et al. (2011, 2010)

�
√ √ √

�

Atluri and Warner (2005) √
� � �

Wainer et al. (2007) √ √
� � �

Crampton and Khambhammettu
(2008c)

√ √
� �

Crampton and Khambhammettu
(2008a)

√ √
� � �

Process-related RBAC delegation
models (our approach)

√ √ √ √ √ √ √ √ √

ing modeling/tool support, or the detec-
tion and resolution of related conflicts is
not further analyzed.

Delegation in a business pro-
cess/workflow context has also received
considerable attention. In Atluri and
Warner (2005), the notion of delegation
is extended to allow for conditional del-
egation. Different types of constraints,
such as separation of duty constraints,
are addressed in the context of delega-
tion. Moreover, three types of conflicts
as well as a runtime allocation algorithm
comparable to Algorithm 4 presented in
Sect. 4 are presented. A formal model
for role-based and task-based delega-
tion in workflows using the notions of
case and organizational unit is described
in Wainer et al. (2007). Compared to
our work, Wainer et al. (2007) does not
distinguish between subject-based and
role-based binding constraints. More-
over, the detection and resolution of
delegation-related conflicts is not dis-
cussed in Wainer et al. (2007). Similar ap-
proaches are also presented in Crampton
and Khambhammettu (2008a, 2008c)

without providing related modeling sup-
port and only limited support for conflict
detection. The effects of some delegation
operations on three workflow execution
models are described in Crampton and
Khambhammettu (2008c).

Only few contributions exist which
consider authorization constraints and
related conflicts in the context of dele-
gation. Gaaloul and Charoy (2009) and
Gaaloul et al. (2011, 2010) present a for-
mal approach for integrating task dele-
gation into the RBAC model which also
considers separation of duty and binding
of duty constraints. Compared to Gaaloul
and Charoy (2009) and Gaaloul et al.
(2011, 2010), our approach also consid-
ers the delegation of duties and provides
a corresponding extension to the UML
to enable the graphical visualization of
process-related delegation concepts. In
Shang and Wang (2008), an extension
to PBDM is presented to integrate au-
thorization constraints in permission-
based delegation. In contrast to our work,
Shang and Wang (2008) only focuses on
static separation of duty constraints and

shortly addresses related conflicts. More-
over, only role-based constraints are ana-
lyzed, while we consider task-based con-
straints. In Crampton and Khambham-
mettu (2008a), the satisfiability prob-
lem of workflows in the context of con-
strained delegation is addressed. Cramp-
ton also provides an algorithm that de-
termines whether to permit a delegation
request. However, the algorithm does
not distinguish between different conflict
types and does not provide correspond-
ing resolutions in order to permit the
delegation. Furthermore, this approach
only considers task- and role-based del-
egation, while we also allow for the del-
egation of duties. Schaad addresses dele-
gation conflicts in Schaad (2001). In con-
trast to our work, only conflicts between
separation of duty constraints and dele-
gation activities in the RBAC96 model are
considered. Moreover, the conflicts are
detected after conducting the delegation,
while our algorithms detect conflicts be-
fore the delegation is performed. Thus, in
our approach, conflicts are detected and

234 Business & Information Systems Engineering 4|2014

BISE – RESEARCH PAPER

resolved before causing an inconsistent
RBAC configuration.

To the best of our knowledge, this work
represents the first attempt to systemat-
ically check for conflicts before delegat-
ing tasks, duties, and roles in a business
process context at design- and runtime.
In contrast to other approaches, we also
consider mutual-exclusion and binding
constraints and provide resolution strate-
gies to resolve each conflict type (see
Table 4).

9 Conclusion

In this paper, we presented an approach
to support the integrated modeling of
delegation concepts and business pro-
cesses. Our approach is based on a for-
mal CIM-layer metamodel for process-
related RBAC delegation models. More-
over, we presented generic algorithms
and resolution strategies for conflicts de-
tected in the context of the delegation of
tasks, duties, and roles. A special focus is
on the problem of mutual-exclusion and
binding constraints in an RBAC delega-
tion context. Note that in our approach,
conflicts are detected and resolved before
causing an inconsistent RBAC configura-
tion. Thereby, we ensure the continuous
consistency of corresponding process-
related RBAC delegation models.

At the PIM layer, we provide UML
modeling support for the integrated
modeling of business processes and cor-
responding delegation policies via ex-
tended UML Activity diagrams. More-
over, to support the controlled delega-
tion of roles, tasks, and duties at the PSM
layer we implemented our approach as a
delegation extension for the BusinessAc-
tivity library and runtime engine, which
is available for download at BAL (2012).
We also performed a case study and con-
ducted interviews to evaluate the practi-
cal applicability of our integrated mod-
eling approach on real-world processes.
In our future work, we plan to conduct
further industrial case studies to ana-
lyze, for instance, potential issues regard-
ing the complexity and comprehensibil-
ity of the graphical syntax of our model-
ing extension. Moreover, we will investi-
gate how other security-related concepts
can be integrated with the delegation ex-
tension. For instance, we intend to in-
tegrate our extension with other secu-
rity extensions, such as the Secure Ob-
ject Flows (SOF) extension introduced
in Hoisl et al. (2014). Furthermore, we

plan to use our generic CIM layer model
to extend other process modeling lan-
guages (such as BPMN) with a delega-
tion extension and analyze potential dif-
ferences between different host languages
with respect to these security extensions.

References

Atluri V, Warner J (2005) Supporting con-
ditional delegation in secure workflow
management systems. In: Proceedings of
the 10th ACM symposium on access con-
trol models and technologies (SACMAT),
pp 49–58

BAL (2012) Business activity library and
runtime engine. http://wi.wu.ac.at/home/
mark/BusinessActivities/library.html.
Accessed 2012-09-24

Barka E, Sandhu R (2000a) A role-based dele-
gation model and some extensions. In: Pro-
ceedings of the 23rd national information
systems security conference (NISSEC)

Barka E, Sandhu R (2000b) Framework for
role-based delegation models. In: Proceed-
ings of the 16th annual computer security
applications conference (ACSAC)

Basin D, Doser J, Lodderstedt T (2006) Model
driven security: from UML models to access
control Infrastructure. ACM Transactions
on Software Engineering and Methodolocy
15(1):39–91

Botha RA, Eloff JH (2001) Separation of du-
ties for access control enforcement in work-
flow environments. IBM Systems Journal
40(3):666–682

Casati F, Castano S, Fugini M (2001) Man-
aging workflow authorization constraints
through active database technology. Infor-
mation Systems Frontiers 3(3):319–338

Cole J, Derrick J, Milosevic Z, Raymond K
(2001) Author obliged to submit paper be-
fore 4 July: policies in an enterprise spec-
ification. In: Proceedings of the Interna-
tional workshop on policies for distributed
systems and networks (POLICY), pp 1–17

Corbin J, Strauss A (2008) Basics of qualitative
research: techniques and procedures for
developing grounded theory. Sage, Thou-
sand Oaks

Crampton J, Khambhammettu H (2008a) Del-
egation and satisfiability in workflow sys-
tems. In: Proceedings of the 13th ACM
symposium on access control models and
technologies (SACMAT), pp 31–40

Crampton J, Khambhammettu H (2008b) Del-
egation in role-based access control. In-
ternational Journal of Information Security
7(2):123–136

Crampton J, Khambhammettu H (2008c) On
delegation and workflow execution mod-
els. In: Proceedings of the 2008 ACM sym-
posium on applied computing (SAC)

Dumas M, Rosa ML, Mendling J, Maesaku R,
Hajo AR, Semenenko N (2012) Understand-
ing business process models: the costs and
benefits of structuredness. In: Proceedings
of the 24th International conference on ad-
vanced information systems engineering
(CAiSE)

Ferraiolo D, Barkley J, Kuhn D (1999) A role-
based access control model and refer-
ence implementation within a corporate
intranet. ACM Transactions on Information
and System Security (TISSEC) 2(1)

Ferraiolo DF, Kuhn DR, Chandramouli R (2007)
Role-based access control, 2nd edn. Artech
House, Norwood

Abstract
Sigrid Schefer-Wenzl, Mark Strembeck

Modeling Support for
Role-Based Delegation
in Process-Aware Information
Systems

In the paper, an integrated approach
for the modeling and enforcement of
delegation policies in process-aware
information systems is presented. In
particular, a delegation extension for
process-related role-based access con-
trol (RBAC) models is specified. The ex-
tension is generic in the sense that it
can be used to extend process-aware
information systems or process model-
ing languages with support for process-
related RBAC delegation models. More-
over, the detection of delegation-re-
lated conflicts is discussed and a set
of pre-defined resolution strategies for
each potential conflict is provided.
Thereby, the design-time and runtime
consistency of corresponding RBAC del-
egation models can be ensured. Based
on a formal metamodel, UML2 mod-
eling support for the delegation of
roles, tasks, and duties is provided.
A corresponding case study evaluates
the practical applicability of the ap-
proach with real-world business pro-
cesses. Moreover, the approach is im-
plemented as an extension to the Busi-
nessActivity library and runtime en-
gine.

Keywords: Access control, Business
processes, Delegation, Duties, RBAC,
Security

Business & Information Systems Engineering 4|2014 235

http://wi.wu.ac.at/home/mark/BusinessActivities/library.html
http://wi.wu.ac.at/home/mark/BusinessActivities/library.html

BISE – RESEARCH PAPER

Gaaloul K, Charoy F (2009) Task delegation
based access control models for workflow
systems. In: Proceedings of the 9th IFIP
conference on e-business, e-services, and
e-society (I3E)

Gaaloul K, Zahoor E, Charoy F, Godart C (2010)
Dynamic authorisation policies for event-
based task delegation. In: Proceedings of
the 22nd International conference on ad-
vanced information systems engineering
(CAiSE)

Gaaloul K, Proper E, Charoy F (2011) An
extended RBAC model for task delega-
tion in workflow systems. In: Proceedings
of the workshops on business informatics
research

Georgiadis CK, Mavridis I, Pangalos G, Thomas
RK (2001) Flexible team-based access con-
trol using contexts. In: Proceedings of
the 6th ACM symposium on access con-
trol models and technologies (SACMAT),
pp 21–27

Ghorbel-Talbi MB, Cuppens F, Cuppens-
Boulahia N (2010) Negotiating and dele-
gating obligations. In: Proceedings of the
International conference on management
of emergent digital ecosystems (MEDES)

Ghorbel-Talbi MB, Cuppens F, Cuppens-
Boulahia N, Metayer DL, Piolle G (2011)
Delegation of obligations and responsibil-
ity. In: Proceedings of the International in-
formation security and privacy conference
(SEC)

Hasebe K, Mabuchi M, Matsushita A (2010)
Capability-based delegation model in
RBAC. In: Proceedings of the 15th ACM
symposium on access control models and
technologies (SACMAT), pp 109–118

Hoisl B, Sobernig S, Strembeck M (2014) Mod-
eling and enforcing secure object flows in
process-driven SOAs: an integrated model-
driven approach. Software and Systems
Modeling 2:513–548

Hove SE, Anda B (2005) Experiences from con-
ducting semi-structured interviews in em-
pirical software engineering research. In:
Proceedings of the 11th IEEE International
software metrics symposium (METRICS)

Joshi JBD, Bertino E (2006) Fine-grained role-
based delegation in presence of the hybrid
role hierarchy. In: Proceedings of the 11th
ACM symposium on access control models
and technologies (SACMAT), pp 81–90

Jürjens J (2005) Sound methods and effec-
tive tools for model-based security engi-
neering with UML. In: Proceedings of the
27th International conference on software
engineering (ICSE)

Mouratidis H, Jürjens J (2010) From goal-
driven security requirements engineering
to secure design. International Journal of
Intelligent Systems 25(8):813–840

Neumann G, Sobernig S (2009) XOTcl 2.0 –
a ten-year retrospective and outlook. In:
Proceedings of the sixteenth annual Tcl/Tk
conference

Neumann G, Sobernig S (2011) An overview
of the next scripting toolkit. In: Proceedings
of the 18th annual Tcl/Tk conference

Neumann G, Zdun U (2000) XOTcl, an object-
oriented scripting language. In: Proceed-
ings of Tcl2k: the 7th USENIX Tcl/Tk confer-
ence

Neumann G, Zdun U (2012) XOTcl homepage.
http://www.xotcl.org/. Accessed 2012-09-
10

Oh S, Park S (2003) Task-role-based access
control model. Information Systems 28(6):
533–562

OMG (2011a) Meta object facility (MOF) core
specification. Version 2.4.1, formal/2011-
08-07. The Object Management Group.

http://www.omg.org/spec/MOF. Accessed
2012-02-27

OMG (2011b) Unified modeling language
(OMG UML): superstructure. Version 2.4.1,
formal/2011-08-06. The Object Manage-
ment Group. http://www.omg.org/spec/
UML

OMG (2014) Object constraint language spec-
ification. Version 2.4, formal/2014-02-03.
The Object Management Group. http://
www.omg.org/spec/OCL. Accessed 2014-
04-25

Ousterhout J (1990) Tcl: an embeddable com-
mand language. In: Proceedings of the
winter USENIX conference

Ravichandran A, Yoon J (2006) Trust man-
agement with delegation in grouped peer-
to-peer communities. In: Proceedings of
the 11th ACM symposium on access con-
trol models and technologies (SACMAT),
pp 71–80

Recker J, Indulska M, Rosemann M, Green P
(2006) How good is BPMN really? Insights
from theory and practice. In: 14th European
conference on information systems

Rodriguez A, de Guzman IGR (2007) Obtain-
ing use case and security use cases from
secure business process through the MDA
approach. In: Proceedings of the interna-
tional workshop on security in information
systems (WOSIS)

Rodriguez A, Fernandez-Medina E, Piattini M
(2006) Towards a UML 2.0 extension for the
modeling of security requirements in busi-
ness processes. In: Proceedings of the inter-
national conference on trust and privacy in
digital business (TrustBus)

Runeson P, Höst M (2009) Guidelines for
conducting and reporting case study re-
search in software engineering. Empirical
Software Engineering 14(2):131–164

Russell N, Hofstede AHMT, Edmond D (2005)
Workflow resource patterns: identification,
representation and tool support. In: Pro-
ceedings of the 17th conference on ad-
vanced information systems engineering
(CAiSE’05). Lecture notes in computer
science, vol 3520. Springer, Heidelberg,
pp 216–232

Sandhu R, Coyne E, Feinstein H, Youman C
(1996) Role-based access control models.
IEEE Computer 29(2):38–47

Schaad A (2001) Detecting conflicts in a role-
based delegation model. In: Proceedings of
the 17th annual computer security applica-
tions conference (ACSAC), pp 117–126

Schaad A, Moffett JD (2002) Delegation of
obligations. In: Proceedings of the 3rd In-
ternational workshop on policies for dis-
tributed systems and networks (POLICY)

Schefer S, Strembeck M (2011a) Modeling
process-related duties with extended UML
activity and interaction diagrams. Elec-
tronic Communications of the EASST, 37

Schefer S, Strembeck M (2011b) Modeling
support for delegating roles, tasks, and du-
ties in a process-related RBAC context. In:
International workshop on information sys-
tems security engineering (WISSE). Lecture
notes in business information processing.
Springer, Heidelberg

Schefer S, Strembeck M, Mendling J, Baum-
grass A (2011) Detecting and resolving con-
flicts of mutual-exclusion and binding con-
straints in a business process context. In:
Proceedings of the 19th International con-
ference on cooperative information sys-
tems (CoopIS). Lecture notes in computer
science, vol 7044. Springer, Heidelberg

Schefer-Wenzl S, Strembeck M, Baumgrass A
(2012) An approach for consistent dele-
gation in process-aware information sys-

tems. In: Proceedings of the 15th Interna-
tional conference on business information
systems (BIS). Lecture notes in business
information processing, vol 117. Springer,
Heidelberg

Schefer-Wenzl S, Sobernig S, Strembeck M
(2013) Evaluating a UML-based model-
ing framework for process-related secu-
rity properties: a qualitative multi-method
study. In: Proceedings of the 21st European
conference on information systems (ECIS),
Utrecht

Schmidt DC (2006) Model-driven engineer-
ing – guest editor’s introduction. IEEE Com-
puter 39(2):25–31

Selic B (2003) The pragmatics of model-driven
development. IEEE Software 20(5):19–25

Shang Q, Wang X (2008) Constraints for
permission-based delegations. In: Proceed-
ings of the 8th IEEE International con-
ference on computer and information
technology workshops (CITWORKSHOPS),
pp 216–223

Sloman MS (1994) Policy driven management
for distributed systems. Journal of Network
and Systems Management 2(4):333–360

Sohr K, Kuhlmann M, Gogolla M, Hu H, Ahn GJ
(2012) Comprehensive two-level analysis of
role-based delegation and revocation poli-
cies with UML and OCL. Information and
Software Technology 54(12):1396–1417

Stahl T, Völter M (2006) Model-driven soft-
ware development. Wiley, New York

Strembeck M (2005) Embedding policy rules
for software-based systems in a require-
ments context. In: Proceedings of the 6th
IEEE International workshop on policies for
distributed systems and networks (POL-
ICY)

Strembeck M (2010) Scenario-driven role en-
gineering. IEEE Security & Privacy 8(1):28–
35

Strembeck M, Mendling J (2010) Generic
algorithms for consistency checking of
mutual-exclusion and binding constraints
in a business process context. In: Pro-
ceedings of the 18th International con-
ference on cooperative information sys-
tems (CoopIS). Lecture notes in computer
science, vol 6426. Springer, Heidelberg

Strembeck M, Mendling J (2011) Model-
ing process-related RBAC models with ex-
tended UML activity models. Information
and Software Technology 53(5):456–483

Tan K, Crampton J, Gunter CA (2004) The con-
sistency of task-based authorization con-
straints in workflow systems. In: Proceed-
ings of the 17th IEEE workshop on com-
puter security foundations

Thomas RK, Sandhu RS (1997) Task-based
authorization controls (TBAC): a family of
models for active and enterprise-oriented
authorization management. In: Proceed-
ings of the IFIP TC11 WG11.3 11th Interna-
tional conference on database security XI:
status and prospects, pp 166–181

Vondal F (2012) Modellierung von Delegati-
on in prozessbezogenen RBAC-Modellen –
Eine Fallstudie. Bachelor thesis, WU Vienna

Wainer J, Barthelmess P, Kumar A (2003)
W-RBAC – a workflow security model in-
corporating controlled overriding of con-
straints. International Journal of Coopera-
tive Information Systems 12(4):455

Wainer J, Kumar A, Barthelmess P (2007) DW-
RBAC: a formal security model of delega-
tion and revocation in workflow systems.
Information Systems 32(3):365–384

Warner J, Atluri V (2006) Inter-instance au-
thorization constraints for secure workflow
management. In: Proceedings of the 11th

236 Business & Information Systems Engineering 4|2014

http://www.xotcl.org/
http://www.omg.org/spec/MOF
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/OCL
http://www.omg.org/spec/OCL

BISE – RESEARCH PAPER

ACM symposium on access control models
and technologies (SACMAT), pp 190–199

Weske M (2012) Business process manage-
ment: concepts, languages, architectures,
2nd edn. Springer, Heidelberg

Wolter C, Schaad A, Meinel C (2008) A trans-
formation approach for security enhanced
business processes. In: Proceedings of the
IASTED International conference on soft-
ware engineering

Wolter C, Menzel M, Schaad A, Miseldine
P, Meinel C (2009) Model-driven business
process security requirement specification.

Journal of Systems Architecture 55(4):211–
223

Zdun U, Strembeck M, Neumann G (2007)
Object-based and class-based composition
of transitive mixins. Information and Soft-
ware Technology 49(8):871–891

Zhang L, Ahn GJ, Chu BT (2003a) A rule-
based framework for role-based delega-
tion and revocation. ACM Transations on
Information System Security 6(3):404–441

Zhang X, Oh S, Sandhu R (2003b) PBDM: a
flexible delegation model in RBAC. In: Pro-
ceedings of the 8th ACM symposium on

access control models and technologies
(SACMAT), pp 149–157

Zhao G, Chadwick D, Otenko S (2007) Obli-
gations for role based access control. In:
Proceedings of the 21st International con-
ference on advanced information network-
ing and applications workshops (AINAW),
pp 424–431

zur Muehlen M, Indulska M (2010) Model-
ing languages for business processes and
business rules: a representational analysis.
Information Systems 35(4):379–390

Business & Information Systems Engineering 4|2014 237

	Modeling Support for Role-Based Delegation in Process-Aware Information Systems
	Introduction
	Process-Related RBAC Delegation Models
	Delegation in a Business Process Context
	Formal Metamodel for Process-Related RBAC Delegation Models

	Identifying and Resolving Delegation Conﬂicts
	Identifying and Resolving Delegability Conﬂicts
	Identifying and Resolving Ownership Conﬂicts
	Identifying and Resolving SME Conﬂicts
	Identifying and Resolving Binding Conﬂicts
	Identifying and Resolving Inheritance Conﬂicts
	Identifying and Resolving Runtime Conﬂicts

	Algorithms for Detecting Delegation Conﬂicts
	A UML Extension for Modeling Process-Related Delegation Models
	UML Metamodel Overview
	OCL Constraints
	Example for Business Activity Delegation Models

	Case Study on Modeling Process-Related RBAC Delegation Models
	Platform Support
	Related Work
	Conclusion
	References
	Abstract

