
Generic Algorithms for Consistency Checking of

Mutual-Exclusion and Binding Constraints in a

Business Process Context

Mark Strembeck1 and Jan Mendling2

1 Vienna University of Economics and Business (WU Vienna), Austria

mark.strembeck@wu.ac.at
2 Humboldt-Universität zu Berlin, Germany

jan.mendling@wiwi.hu-berlin.de

Abstract In this paper, we present generic algorithms to ensure the consistency

of mutual-exclusion and binding constraints in a business process context. We re-

peatedly identified the need for such generic algorithms in our real-world projects.

Thus, the algorithms are a result of the experiences we gained in analyzing,

designing, and implementing a number of corresponding software systems and

tools. In particular, these algorithms check corresponding consistency require-

ments to prevent constraint conflicts and to ensure the design-time and runtime

compliance of a process-related role-based access control (RBAC) model.

1 Introduction

Business processes model standard workflows and are performed to reach the opera-

tional goals of an organization. When performing an IT-supported workflow, human

users and autonomous software agents have to fulfill certain tasks. Each action in a

workflow (like changing a document or sending a message) is typically associated with

a certain access operation (e.g. to a document or a messaging service). Thus, an active

entity participating in a workflow (be it a human user or a software agent) must be autho-

rized to perform the actions that are needed to complete its tasks (see, e.g. [8,15,23,24]).

In recent years, security properties such as mutual-exclusion and binding-of-duty play

an increasingly important role in process-aware information systems [16]. In the con-

text of business process management, mutual exclusion and binding constraints are an

important means to assist the specification of business processes and to control the ex-

ecution of workflows. In particular, they are used to enforce process-related separation

of duty (SOD) and binding of duty (BOD) policies with respect to a corresponding

role-based access control (RBAC) model (see, e.g., [1,3,4,22,24]). A number of ap-

proaches exist that allow for the formal specification and analysis of process-related

access control policies and constraints (see, e.g., [2,12,22]). However, when building a

software system we have to “translate” such formal approaches for the specification of

access control policies and constraints to the (programming) language that is used to

implement the respective system. With respect to the rapidly increasing importance of

process-aware information systems, the correct implementation of corresponding con-

sistency checks in these systems is an important issue.

ms
Textfeld

 This is an extended version of the paper published as: M. Strembeck, J. Mendling: Generic Algorithms for Consistency Checking of
 Mutual-Exclusion and Binding Constraints in a Business Process Context, In: Proc. of the 18th International Conference on Cooperative
 Information Systems (CoopIS), Lecture Notes in Computer Science (LNCS), Vol. 6426, Springer Verlag, October 2010, Crete, Greece

 In the extended version, we reinserted the text that we had to cut from the paper due to the page restrictions for the conference version.

2

In this paper, we present a set of algorithms that check and ensure the consistency of

mutual-exclusion and binding constraints in a business process context. The definition

of these algorithms was inspired by our real-world RBAC and role engineering projects,

where we repeatedly identified the need for such generic (i.e. programming language

independent) consistency checks. In particular, the algorithms result from the experi-

ences we gained in the analysis, design, and implementation of corresponding software

systems and tools (see, e.g., [10,13,14,18,19,20,21]).

The remainder of this paper is structured as follows. Section 2 gives an overview

of mutual-exclusion and binding constraints. Next, Section 3 defines the essential ele-

ments of process-related RBAC models and specifies requirements for design-time and

runtime consistency of these models. Sections 4 and 5 present our algorithms for en-

suring the consistency of mutual-exclusion and binding constraints in a process-related

RBAC model. Section 6 discusses related work and Section 7 concludes the paper.

2 Mutual Exclusion and Binding Constraints

Separation of duty (SOD) constraints enforce conflict of interest policies [1,5,7,11]).

Conflict of interest arises as a result of the simultaneous assignment of two mutual

exclusive tasks or roles to the same subject. Thus, the definition of mutual exclusive ar-

tifacts is a well-known mechanism to enforce separation of duty. Mutual exclusive roles

or tasks result from the division of powerful rights or responsibilities to prevent fraud

and abuse. An example is the common practice to separate the “controller” role and the

“chief buyer” role in medium-sized and large companies. In this context, a task-based

SOD constraint is a constraint that considers task order and task history in a particu-

lar process instance to decide if a certain subject or role is allowed to perform a certain

task [3,9,22,23,25]. Task-based SOD constraints can be static or dynamic. A static task-

based SOD constraint can be enforced by defining that two statically mutual exclusive

(SME) tasks must never be assigned to the same role and must never be performed by

the same subject. This constraint is global with respect to all process instances in the

corresponding information system. In contrast, a dynamic task-based SOD constraint

refers to individual process instances and can be enforced by defining that two dynami-

cally mutual exclusive (DME) tasks must never be performed by the same subject in the

same process instance. In other words: two DME tasks can be assigned to the same role.

However, to complete a process instance which includes two DME tasks, one needs at

least two different subjects. This means, although a subject might possess a role which

includes all permissions to perform two DME tasks, a DME constraint enforces that the

same subject does not perform both tasks in the same process instance.

Binding of Duty (BOD) constraints [4,22,24] define a connection between two (or

more) tasks so that a subject (or role) who performed one of these tasks must also per-

form the corresponding related task(s). In other words, in a given process instance two

“bound tasks” must always be performed by the same subject/role, e.g. because of spe-

cific knowledge the subject/role acquires while performing the first of two bound tasks,

for reasons of organization-internal processing standards, or to simplify interaction with

other process stakeholders. Moreover, BOD can be subdivided in subject-based and

role-based constraints. A subject-based BOD constraint then defines that the same in-

3

dividual who performed the first task must also perform the bound task(s). In contrast to

that, a role-based BOD constraint defines that bound tasks must be performed by mem-

bers of the same role, but not necessarily by the same individual. Throughout the paper,

we will use the terms subject-binding and role-binding as synonyms for subject-based

BOD constraints and role-based BOD constraints respectively.

3 Basic Definitions for Process-Related RBAC Models

The context of a workflow system is given through process instances and correspond-

ing task instances. In this paper, we therefore focus on mutual-exclusion and binding

constraints defined on the task level (instead of mutual exclusion constraints on roles

[11]). A role that is associated with one or more tasks then inherits the corresponding

SME, DME, or binding constraints from these tasks (see below). Definition 1 specifies

the essential elements of process-related RBAC models and their basic interrelations.

Definition 1 (Process-related RBAC Model). A Process-related RBAC ModelPRM =
(E,Q,D) where E = S ∪ R ∪ PT ∪ PI ∪ TT ∪ TI refers to pairwise disjoint sets of

the model, Q = rh∪ rsa∪ tra∪ es∪ er∪ ar∪ pi∪ ti to mappings that establish rela-

tionships, and D = sb∪ rb∪ sme∪ dme to binding and mutual-exclusion constraints,

such that:

– For the sets of the meta model:

• An element of S is called Subject. S 6= ∅.

• An element of R is called Role. R 6= ∅.

• An element of PT is called Process Type. PT 6= ∅.

• An element of PI is called Process Instance. PI 6= ∅.

• An element of TT is called Task Type. TT 6= ∅.

• An element of TI is called Task Instance.

– For the partial mappings of the meta model (P refers to the power set):

1. The mapping rh : R 7→ P(R) is called role hierarchy. For rh(rs) = Rj we

call rs senior role and Rj the set of direct junior roles. The transitive closure

rh∗ defines the inheritance in the role-hierarchy such that rh∗(rs) = Rj∗

includes all direct and transitive junior-roles that the senior-role rs inherits

from. The role-hierarchy is cycle-free, i.e. for each r ∈ R : rh∗(r) ∩ {r} = ∅.

2. The mapping rsa : S 7→ P(R) is called role-to-subject assignment. For

rsa(s) = Rs we call s subject and Rs ⊆ R the set of roles assigned to this

subject (the set of roles owned by s). The mapping rsa−1 : R 7→ P(S) returns

all subjects assigned to a role (the set of subjects owning a role).

This assignment implies a mapping role ownership rown : S 7→ P(R), such

that for each subject s all direct and inherited roles are included, i.e. rown(s) =⋃
r∈rsa(s) rh

∗(r)∪rsa(s). The mapping rown−1 : R 7→ P(S) returns all sub-

jects assigned to a role (directy or transitively via a role-hierarchy).

3. The mapping es : TI 7→ S is called executing-subject mapping. For es(t) = s
we call s the executing subject and t is called executed task instance.

4. The mapping er : TI 7→ R is called executing-role mapping. For er(t) = r we

call r the executing role and t is called executed task instance.

4

5. The mapping tra : R 7→ P(TT) is called task-to-role assignment. For tra(r) =
Tr we call r role and Tr ⊆ TT is called the set of tasks assigned to r. The map-

ping tra−1 : TT 7→ P(R) returns the set of roles a task is assigned to (the set

of roles owning a task).

This assignment implies a mapping task ownership town : R 7→ P(TT), such

that for each role r the tasks inherited from its junior-roles are included, i.e.

town(r) =
⋃

rinh∈rh∗(r) tra(rinh) ∪ tra(r). The mapping town−1 : TT 7→

P(R) returns the set of roles a task is assigned to (directly or transitively via a

role-hierarchy).

6. The mapping ti : (TT×PI) 7→ P(TI) is called task instantiation. For ti(tT , pI) =
Ti we call Ti ⊆ TI set of task instances, tT ∈ TT is called task type and

pI ∈ PI is called process instance.

7. The mapping pi : PT 7→ P(PI) is called process instantiation. For pi(pT) =
Pi we call pT process type and Pi ⊆ PI the set of process instances instanti-

ated from process type pT .

8. The mapping ar : S 7→ R is called active role mapping. For ar(s) = r we call

s the subject and r the active-role of s1.

9. The mapping sb : TT 7→ P(TT) is called subject-binding. For sb(t1) = Tsb we

call t1 the subject binding task and Tsb ⊆ TT the set of subject-bound tasks.

10. The mapping rb : TT 7→ P(TT) is called role-binding. For rb(t1) = Trb we

call t1 the role binding task and Trb ⊆ TT the set of role-bound tasks.

11. The mapping sme : TT 7→ P(TT) is called static mutual exclusion. For

sme(t1) = Tsme with Tsme ⊆ TT we call each pair t1 and tx ∈ Tsme stati-

cally mutual exclusive tasks.

12. The mapping dme : TT 7→ P(TT) is called dynamic mutual exclusion. For

dme(t1) = Tdme with Tdme ⊆ TT we call each pair t1 and tx ∈ Tdme dynam-

ically mutual exclusive tasks.

For process-related RBAC Models there are two types of correctness. Static correctness

refers to the design-time consistency of the elements and relationships in the Process-

related RBAC Model. In particular, it refers to process types and task types. Dynamic

correctness relates to the compliance of runtime process instances with the mutual-

exclusion and binding constraints. Definition 2 provides the rules for static correctness.

Definition 2. Let PRM = (E,Q,D) be a Process-related RBAC Model. PRM is

said to be statically correct if the following requirements hold:

1. Tasks cannot be mutual exclusive to themselves:

∀t2 ∈ sme(t1) : t1 6= t2 and ∀t2 ∈ dme(t1) : t1 6= t2
2. Mutuality of mutual exclusion constraints:

∀t2 ∈ sme(t1) : t1 ∈ sme(t2) and ∀t2 ∈ dme(t1) : t1 ∈ dme(t2)
3. Tasks cannot be bound to themselves:

∀t2 ∈ sb(t1) : t1 6= t2 and ∀t2 ∈ rb(t1) : t1 6= t2
4. Mutuality of binding constraints:

∀t2 ∈ sb(t1) : t1 ∈ sb(t2) and ∀t2 ∈ rb(t1) : t1 ∈ rb(t2)

1 We assume that each subject can (at the subject’s discretion) activate the roles that are directly

assigned to this subject as well as the junior-roles of its directly assigned roles (see, e.g., [7,17])

5

5. Tasks are either statically or dynamically mutual exclusive:

∀t2 ∈ sme(t1) : t2 6∈ dme(t1)
6. Either SME constraint or binding constraint:

∀t2 ∈ sme(t1) : t2 6∈ sb(t1) ∧ t2 6∈ rb(t1)
7. Either DME constraint or subject-binding constraint:

∀t2 ∈ dme(t1) : t2 6∈ sb(t1)
8. Consistency of task-ownership and SME:

∀t2 ∈ sme(t1) : town
−1(t2) ∩ town−1(t1) = ∅

9. Consistency of role-ownership and SME: ∀t2 ∈ sme(t1), r2 ∈ town−1(t2), r1 ∈
town−1(t1) : rown

−1(r2) ∩ rown−1(r1) = ∅

Definition 2.6 states that it is not possible to have a SME constraint and a bind-

ing constraint between the same task types t1 and t2. In other words: SME constraints

conflict with all types of binding constraints (subject-binding and role-binding). This is

because a binding constraint defines that (in the context of the same process instance)

the instances of two bound task types must be performed by the same subject respec-

tively the same role, while a SME constraint defines that the instances of two statically

mutual exclusive task types must not be performed by the same subject respectively the

same role. Obviously, it is impossible to fulfill both constraints at the same time.

DME

Tasks

SME

Tasks

Role-Bound

Tasks

Subject-Bound

Tasks

DME Tasks X X

SME Tasks X X X

Role-Bound

Tasks
X

Subject-Bound

Tasks
X X

Table 1. Conflicting constraint types

Furthermore, Definition 2.7 states that it is not possible to specify a DME con-

straint and a subject-binding constraint between the same two task types t1 and t2. This

means: DME constraints and subject-binding constraints conflict. This is because a

subject-binding constraint defines that (in the context of the same process instance) the

instances of two bound task types must be performed by the same subject (the same in-

dividual). In contrast, a DME constraint defines that (in the context of the same process

instance) the instances of two task types must not be performed by the same subject.

Again, it is obvious that we cannot fulfill both constraints at the same time. Note that

it is possible, however, to simultaneously define a role-binding constraint and a DME

constraint on two tasks. This is because a DME constraint defines that (in the context of

the same process instance) a subject must not own the instances of two dynamically mu-

tual exclusive task types (see above). A role-binding constraint yet only defines that (in

the context of the same process instance) the instances of two bound task types must be

performed by the same role, not by the same subject/individual. This can be interpreted

as a peer review (different subjects owning the same role). Therefore, DME constraints

and role-binding constraints do not conflict. Table 1 summarizes the constraint conflicts

discussed above. Definition 2.8 specifies that no role can own two SME tasks, neither

directly nor via a role-hierarchy (see also Def. 1.1 and Def. 1.5). Finally, Definition 2.9

specifies that no subject can own two roles that are associated with SME tasks.

6

Definition 3 provides the rules for dynamic correctness of a process-related RBAC

model, i.e. the rules that can only be checked in the context of runtime process instances.

Definition 3. Let PRM = (E,Q,D) be a Process-related RBAC Model and PI its set

of process instances. PRM is said to be dynamically correct if the following require-

ments hold:

1. In the same process instance, the executing subjects of SME tasks must be different:

∀t2 ∈ sme(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) ∩ es(ty) = ∅
Please note that we include this rule for the sake of completeness only, as the rule

must always hold due to the consistency rule for role-ownership and SME (see

Def. 2.9).

2. In the same process instance, the executing subjects of DME tasks must be different:

∀t2 ∈ dme(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) ∩ es(ty) = ∅
3. In the same process instance, role-bound tasks must have the same executing-role:

∀t2 ∈ rb(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : er(tx) = er(ty)
4. In the same process instance, subject-bound tasks must have the same executing-

subject: ∀t2 ∈ sb(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) = es(ty)

4 Algorithms for Design-Time Consistency

The algorithms defined in this section check the design-time consistency of a process-

related RBAC model. Therefore, these algorithms operate on task types defined in the

context of a process-related RBAC model (see Section 3). For the purposes of this pa-

per, we distinguish algorithms and procedures. Here, an algorithm performs certain

checks based on the current configuration of a process-related RBAC model. Algo-

rithms either return true or false. A procedure operates on the current configuration of a

process-related RBAC model and may include side-effects (i.e. change model elements,

relations, or variables). Procedures either return a set or do not return anything (void).

4.1 Checks for Constraint Definition

Algorithm 1 Check if it is allowed to define a (new) SME constraint on two task types.

Input: task1, task2 ∈ TT

1: if task1 == task2 then return false

2: if task1 ∈ dme(task2) then return false

3: if task1 ∈ rbt(task2) then return false

4: if task1 ∈ sbt(task2) then return false

5: if ∃ r ∈ R | r ∈ town(task1) ∧ r ∈ town(task2)
6: then return false

7: if ∃ s ∈ S | r1 ∈ rown(s) ∧ r2 ∈ rown(s) ∧
8: r1 ∈ town(task1) ∧ r2 ∈ town(task2)
9: then return false

10: return true

7

t
4

r
j

t
3r

s

senior
t
1

t
2

r
t
6r

y

t
5

r
x

s

a) b) c)

junior

Figure 1. Examples for Algorithm 1

A task type must not be mutual exclusive to itself (see Def. 2.1). Thus, line 1 of

Algortihm 1 returns false if this consistency requirement is not fulfilled. Next, lines 2-4

check the consistency requirements specified in Def. 2.5 and Def. 2.6. Subsequently,

lines 5-6 check if a role exists which already owns the two task types. In case a corre-

sponding role is found, the algorithm returns false because defining a SME constraint

on two task types that are owned by the same role would violate the consistency re-

quirement specified in Def. 2.8. For example, the definition of a new SME constraint on

the tasks t1 and t2 in Figure 1a) must be forbidden. Otherwise, r would subsequently

own two SME tasks. Similarily, the definition of a new SME constraint on tasks t3 and

t4 in Figure 1b) must be forbidden. Otherwise, the senior-role rs would subsequently

own two SME tasks (t3 is directly assigned to rs and t4 is inherited from its junior-role

rj)2. Afterwards, lines 7-9 check if a subject exists that (via its roles) already owns the

two task types. In case a corresponding subject is found, the algorithm returns false be-

cause defining a SME constraint on two task types that are owned by the same subject

would violate the consistency requirements specified in Def. 2.9. Figure 1c) shows an

example where the definition of a new SME constraint on the tasks t5 and t6 must be

forbidden. Otherwise, subject s would subsequently own the right to perform two SME

tasks (via its roles rx and ry). If none of the above checks returns false, the algorithm

finally reaches line 10 and returns true – meaning that it is allowed to define a new SME

constraint on the respective task types.

Algorithm 2 Check if it is allowed to define a (new) DME constraint on two task types.

Input: task1, task2 ∈ TT

1: if task1 == task2 then return false

2: if task1 ∈ sme(task2) then return false

3: if task1 ∈ sbt(task2) then return false

4: return true

Because it requires less consistency checks, Algorithm 2 is much more simple com-

pared to Algorithm 1. In Algorithm 2, line 1 first ensures the consistency requirement

specified in Def. 2.1. Next, lines 2-3 check if the new DME constraint would violate the

consistency requirements specified in Def. 2.5 and Def. 2.7. In case none of the above

2 For demonstration purposes, Figure 1b) includes a simple two level role-hierarchy. However,

the algorithms presented in this paper check hierarchies with an arbitrary number of levels, of

course.

8

checks returns false, the algorithm finally reaches line 4 and returns true – meaning that

it is allowed to define a new DME constraint on the respective task types.

Procedure 1 Compile the set of all task types that have a direct or a transitive subject-

binding relation to a particular taska.

Name: allSubjectBindings

Input: taska ∈ TT

1: taska set visited = true

2: create empty set directbindings

3: create empty set transitivebindings

4: for each taskb ∈ sbt(taska)
5: if ! taskb visited then

6: add taskb to directbindings

7: add allSubjectBindings(taskb) to transitivebindings

8: return directbindings ∪ transitivebindings

t
a

t
b

t
c

t
d

t
e t

f
t
g

sb

sbsb

Figure 2. Example for Procedure 1

Procedure 1 traverses a graph consisting of task types (forming the graph’s nodes)

and subject-binding relations (forming the graph’s edges) that are defined on these task

types. In particular, the procedure receives a certain task type (taska) as input parameter

and compiles the list of all task types that have a direct or a transitive subject-binding

relation to taska. In accordance with standard graph traversal algorithms, each node

processed by the algorithm is marked as ”visited” in order to have a stop criterion (i.e. all

reachable nodes have been visited). To find all transitive nodes, the algorithm includes a

recursion (see line 7). After all reachable nodes have been visited, the algorithm returns

the set of all task types having a (direct or transitive) subject-binding to taska
3 . In case

no subject-binding for taska exists, the procedure returns an empty set. The example

from Figure 2 shows a process that includes three subject-binding relations between ta
and tg, tg and te, as well as te and td respectively. In this example, ta thus has a direct

subject-binding to tg and transitive subject-bindings to te and td.

3 We assume that each procedure defined in this paper returns a set (instead of a multiset), i.e.

each member of the returned set is a unique element.

9

Procedure 2 Compile the set of all task types that have a direct or a transitive role-

binding relation to a particular taska.

Name: allRoleBindings

Input: taska ∈ TT

1: taska set visited = true

2: create empty set directbindings

3: create empty set transitivebindings

4: for each taskb ∈ rbt(taska)
5: if ! taskb visited then

6: add taskb to directbindings

7: add allRoleBindings(taskb) to transitivebindings

8:return directbindings ∪ transitivebindings

Procedure 2 is similar to Procedure 1, only that it compiles and returns the set of all

task types that have a (direct or transitive) role-binding to a certain task type taska.

Algorithm 3 Check if it is allowed to define a (new) subject-binding constraint on two

task types task1 and task2.

Input: task1, task2 ∈ TT

1: if task1 == task2 then return false

2: if task1 ∈ dme(task2) then return false

3: if task1 ∈ sme(task2) then return false

4: if ∃ taskx ∈ sme(task1) | taskx ∈ allSubjectBindings(task2)
5: then return false

6: if ∃ taskx ∈ dme(task1) | taskx ∈ allSubjectBindings(task2)
7: then return false

8: if ∃ taskx ∈ sme(task2) | taskx ∈ allSubjectBindings(task1)
9: then return false

10: if ∃ taskx ∈ dme(task2) | taskx ∈ allSubjectBindings(task1)
11: then return false

12: return true

t
2

t
1

t
x

sme/dme

sb
t
2

t
1

t
y

sme/dme

sb

t
x

sb

a) b)

Figure 3. Examples for Algorithm 3

10

In Algorithm 3, lines 1-3 ensure that the consistency requirements specified in Def.

2.3, 2.6, and 2.7 hold. Next, lines 4-5 check if some taskx exists that is already defined

as SME to task1 while having a subject-binding relation to task2 at the same time. In

case such a taskx exists, Algorithm 3 returns false because the definition of a new (di-

rect) subject-binding relation between task1 and task2 would also define a (transitive)

subject-binding between task1 and taskx. In other words, because SME constraints

and binding constraints conflict, such a configuration would violate the consistency re-

quirement specified in Def. 2.6. Lines 6-7 perform a similar check for DME constraints

to ensure that the consistency requirement specified in Def. 2.7 holds.

Figure 3a) shows an example, where the definition of a new subject-binding between

the tasks t1 and t2 must be forbidden because t1 already has a (static or dynamic)

mutual-exclusion relation to a third task tx which, at the same time, has a subject-

binding relation to t2. Figure 3b) shows another example, where a new subject-binding

between t1 and t2 must be forbidden because t2 has a transitive subject-binding relation

to a task tx which also has a (static or dynamic) mutual-exclusion relation to t1 (see also

Procedure 1). Subsequently, lines 8-11 perform the same checks from the ”perspective”

of task2.

Note that it is necessary to perform the checks from the perspective of task1 (lines

4-7) and from the perspective of task2 (lines 8-11) because either of these tasks may

already have a (direct or transitive) subject-binding to some taskx which also has a

SME constraint to the other task type. In case none of the above checks returns false,

the Algorithm finally reaches line 12 and returns true – meaning that it is allowed to

define a new subject-binding constraint on the respective task types.

Algorithm 4 Check if it is allowed to define a (new) role-binding constraint on two

task types

Input: task1, task2 ∈ TT

1: if task1 == task2 then return false

2: if task1 ∈ sme(task2) then return false

3: if ∃ taskx ∈ sme(task1) | taskx ∈ allRoleBindings(task2)

4: then return false

5: if ∃ taskx ∈ sme(task2) | taskx ∈ allRoleBindings(task1)

6: then return false

7: return true

In principle, the checks in Algorithm 4 are similar to the checks performed by Al-

gorithm 3. However, because DME constraints do not conflict with role-binding con-

straints (see Section 3), Algorithm 4 only has to ensure that the consistency require-

ments specified in Def. 2.3 (line 1) and Def. 2.6 (lines 2-6) hold. If none of the above

checks returns false, Algorithm 4 finally reaches line 7 and returns true – meaning that

it is allowed to define a new role-binding constraint on the corresponding task types.

11

4.2 Checks for new Assignment Relations

r
5

r
6

r
7

seniorsenior

senior

r
8

senior

r
9

r
10

senior

r
1

senior

r
2

r
3

r
4

seniorsenior

Figure 4. Example for Procedure 3

Procedure 3 Compile the set of all direct and transitive senior-roles of a rolea.

Name: allSeniorRoles

Input: rolea ∈ R
1: create empty set transitiveseniorroles

2: for each rolex ∈ directSeniorRoles(rolea)
3: add allSeniorRoles(rolex) to transitiveseniorroles

4: return transitiveseniorroles ∪ directSeniorRoles(rolea)

First, we define the procedure allSeniorRoles because this procedure is needed

for the definition of the subsequent algorithms. Procedure 3 traverses the role-hierarchy

to compile the set of all (direct and transitive) senior-roles of a particular role4. To find

all transitive senior-roles the procedure includes a recursion (see line 3). For example,

for r2 from Figure 4 the procedure would return a set consisting of r3 and r4. And for

r6 it would return a set consisting of r8, r9, and r10.

Algorithm 5 Check if it is allowed to assign a particular task type taskx to a particular

roley (also called task-to-role assignment).

Input: taskx ∈ TT , roley ∈ R
1: if ∃ tasky ∈ town(roley) | tasky ∈ sme(taskx)
2: then return false

3: if ∃ rolez ∈ allSeniorRoles(roley) |
4: taskz ∈ town(rolez) ∧ taskz ∈ sme(taskx)
5: then return false

6: if ∃ s ∈ S | roley ∈ rown(s) ∧ rolez ∈ rown(s)∧
7: taskz ∈ town(rolez) ∧ taskz ∈ sme(taskx)
8: then return false

9: return true

4 In general, role-hierarchies are directed acyclic graphs (DAG) and senior-roles inherit the tasks

assigned to their junior-roles (see Section 3). For the sake of simplicity, we therefore assume

that each role “knows” its adjacent nodes (i.e. its direct junior-roles and senior-roles). In par-

ticular, we assume the existence of a procedure directSeniorRoles which simply returns the

set of direct senior-roles of a particular role. For example, in an actual implementation each

role object may contain a variable that includes the references to its direct senior-roles.

12

t
yr

y

t
z

r
z

s

t
x

sme

t
x

r
y

t
zr

z

senior

sme

t
x

t
yr

y

sme

a) b) c)

junior

Figure 5. Examples for Algorithm 5

In Algorithm 5, lines 1-2 check if the role already owns some tasky which has a

SME constraint to taskx. If such a tasky exists, the algorithm returns false to ensure

the consistency requirement specified in Def. 2.8. Figure 5a) shows a corresponding

example, where task tx must not be assigned to role ry because ry already owns ty
which is defined as SME to tx. Next, lines 3-5 check if roley has a (direct or tranisitive)

senior-role rolez which again owns a taskz that has a SME constraint to taskx. In case

such a rolez exists, the algorithm returns false to ensure the consistency requirement

specified in Def. 2.8.

In other words, the assignment of a task which is mutual exclusive to one of tasks

assigned to a senior-role must not be allowed. Otherwise, the senior-role would (via the

role-hierarchy) acquire two SME tasks. Figure 5b) shows an example where a senior-

role rz owns a task tz which is defined as SME to task tx. Therefore, tx must not be

assigned to ry (or any other junior-role of rz). This is because assigning tx to ry would

also mean to transitively assign tx to rz (and to any other senior-role of ry). Thus, rz
would inherit tx from its junior-role ry and thereby own two SME tasks (see also Def.

1.1 and Def. 1.5).

Subsequently, lines 6-8 check if one of the subjects owning roley does also own

another rolez which again has a taskz that is defined as SME to taskx. In case such a

subject exists, the algorithm returns false to ensure the consistency requirement spec-

ified in Def. 2.9. In other words, it must not be allowed to assign a task to a certain

roley if one of the subjects owning roley also owns the right to perform a SME task.

Otherwise, this subject would acquire the right to perform two SME tasks. In the ex-

ample from Figure 5c), subject s owns the right to perform the tasks ty and tz (via its

roles ry and rz). Moreover, tz has an SME constraint on tx. Therefore, tx must not be

assigned to ry . This means, although ry does not own a task which has a SME con-

straint on tx (neither directly nor transitively), the assignment of tx to ry must still be

forbidden because subject s simultaneously owns ry and rz . In case none of the above

checks returns false, Algorithm 5 finally reaches line 9 and returns true – meaning that

it is allowed to assign taskx to roley .

13

a) b) c)

t
j

r
j

t
x

sme

senior

r
x

r
s

t
sr

s

t
x

r
x

s

t
j

sme

r
j

sme

t
j

r
j

t
sr

s

junior

Figure 6. Examples for Algorithm 6

Algorithm 6 Check if it is allowed to define a (new) junior-role relation between two

roles. In particular, check if it is allowed to define a role junior as junior-role of an-

other role senior (also called role-to-role assignment).

Input: junior, senior ∈ R
1: if junior == senior then return false

2: if ∃ taskj ∈ town(junior) ∧ tasks ∈ town(senior) |
3: taskj ∈ sme(tasks)
4: then return false

5: if ∃ rolex ∈ allSeniorRoles(senior) |
6: taskx ∈ town(rolex) ∧ taskj ∈ town(junior)∧
7: taskx ∈ sme(taskj)
8: then return false

9: if ∃ s ∈ S | senior ∈ rown(s) ∧ rolex ∈ rown(s)∧
10: taskx ∈ town(rolex) ∧ taskj ∈ rown(junior)∧
11: taskx ∈ sme(taskj)
12: then return false

13: return true

Because a role cannot be its own junior-role, line 1 of Algorithm 6 first checks

this consistency requirement (see also Def. 1.1). Next, lines 2-4 check if the designated

junior role owns a taskj that has a SME constraint to another tasks which is owned

by the designated senior role. In case such two a taskj and tasks exist, the algorithm

returns false to ensure the consistency requirement specified in Def. 2.8. In other words,

it must not be allowed to define a new inheritance relation between two roles if the re-

spective roles already own two SME tasks. Otherwise, the designated senior-role would

acquire the right to perform two SME tasks. Figure 6a) shows a corresponding example,

where the definition of a new junior-role relation between rs and rj must be forbidden,

because ts and tj are SME tasks.

Next, lines 5-8 check if the designated senior role already has a (direct or transitive)

senior-role rolex that owns a taskx and has a SME constraint to another taskj that is

assigned to the designated junior role. In case such a rolex exists, the algorithm returns

false to ensure the consistency requirement specified in Def. 2.8. In other words, it must

not be allowed to define a new inheritance relation between two roles if thereby a third

role would acquire the right to perform two SME tasks. For example, in Figure 6b) role

14

rj must not be defined as junior-role of rs. Otherwise, rx (senior-role of rs) would be

able to perform the two SME tasks tx and tj . Subsequently, lines 9-12 check if one of

the subjects already owning the designated senior role, does also own another rolex
that grants the right to perform a taskx which has a SME constraint to another taskj
assigned to the designated junior role. In case such a rolex exists the algorithm returns

false to ensure the consistency requirement specified in Def. 2.9.

In other words, it must not be allowed to define a new inheritance relation between

two roles, if thereby a subject would acquire the right to perform two SME tasks. Figure

6c) shows a corresponding example where role rj must not be defined as junior-role of

rs. This means, although rs and rj do not own two SME tasks, the definition of a new

junor-role relation between rs and rj must still be forbidden because subject s simulta-

neously owns rx and rs. Otherwise, s would acquire the right to perform two SME tasks

(tx and tj). In case none of the above checks returns false, Algorithm 6 finally reaches

line 13 and returns true – meaning that it is allowed to define a new junior-role/senior-

role relation between the corresponding roles. Note, that because role-hierarchies are

directed acyclic graphs, it is in fact also necessary to check if a new junior-role relation

(a new role-to-role assignment) would create a cycle in the role-hierarchy (see also Def.

1.1). However, because this issue is generic to each DAG and is not related to mutual-

exclusion or binding constraints, we decided to omit the cycle check in Algorithm 6.

s

t
x

sme

r
x

t
y

r
y

s

t
x

sme

r
x

t
y

r
y

senior

r
z

junior

t
z

a) b)

Figure 7. Examples for Algorithm 7

Algorithm 7 Check if it is allowed to assign a particular role to a particular subject

(role-to-subject assignment).

Input: rolex ∈ R, subject ∈ S
1: if ∃ roley ∈ rown(subject) | tasky ∈ town(roley)∧
2: taskx ∈ town(rolex) ∧ tasky ∈ sme(taskx)
3: then return false

4: return true

In Algorithm 7, lines 1-3 check if the respective subject already owns a roley which

grants the right to perform a tasky that has a SME constraint to one of the tasks as-

signed to rolex. In case such a roley exists, the algorithm returns false to ensure the

15

consistency requirement specified in Def. 2.9. In other words, it must not be allowed to

assign a new role to a particular subject if this subject would thereby acquire the right to

perform two SME tasks. Figure 7a) shows a respective example, where role rx must not

be assigned to subject s, because s already owns role ry . Otherwise, s would acquire

the right to perform two SME tasks (tx and ty). In Figure 7b) we see another example,

where rx must not be assigned to s because s already owns rz and can thereby (via the

role-hierarchy) perform ty which has an SME constraint on tx.

5 Algorithms for Runtime Consistency

Runtime consistency refers to the fact that the constraints defined in a process-related

RBAC model must not only be enforced at design-time but also when executing ac-

tual process instances (see Section 3). In particular, mutual-exclusion and binding con-

straints directly impact the allocation of tasks to subjects. First, we define the procedure

executableTasks because it is needed for the definition of the subsequent algorithm.

Procedure 4 Compile the set of all tasks a particular subject could currently execute

(based on the roles currently assigned to this subject).

Name: executableTasks

Input: s ∈ S
1: create empty set executable

2: for each role ∈ rown(s)
3: add town(role) to executable

4: return executable

Procedure 4 visits all roles assigned to a particular subject to compile the set of all tasks

that can (potentially) be executed by this particular subject, i.e. all tasks that are directly

or transitively assigned to the respective subject (see also Def. 1.2 and Def. 1.5).

Algorithm 8 Check if particular task instance (which is part of a particular process

instance) can be allocated to a particular subject.

Input:subject ∈ S, tasktype ∈ TT , processtype ∈ PT ,
processinstance ∈ pi(processtype),
taskinstance ∈ ti(tasktype, processinstance)

1: if tasktype /∈ executableTasks(subject) then return false

2: if es(taskinstance) 6= ∅ then return false

3: if er(taskinstance) 6= ∅ ∧ er(taskinstance) 6= ar(subject)
4: then return false

5: if ∃ typex ∈ allSubjectBindings(tasktype) |
6: typex /∈ executableTasks(subject)
7: then return false

8: if ∃ instancey ∈ ti(typey, processinstance) |
9: typey ∈ dme(tasktype) ∧ es(instancey) == subject
10: then return false

11: return true

16

Algorithm 8 checks if the instance of a certain task type can be allocated to a cer-

tain subject. First, line 1 checks if the corresponding subject is allowed to execute the

taskstype the corresponding taskinstance was instantiated from (see also Procedure 4).

If the subject is not allowed to execute this particular tasktype the respective instance

must not be allocated to this subject and therefore the algorithm returns false. Next, line

2 checks if the corresponding task instance has already been allocated, i.e. if this task

instance already has an executing-subject (see also Def. 1.3). In case the respective task

instance is already allocated to another subject, the algorithm returns false. In particular,

this means that the subject cannot be allocated to this very taskinstance but it can still

be allocated to other instances of the corresponding tasktype, of course.

Afterwards, lines 3-4 check if the taskinstance already has an executing-role, and if

so whether this executing-role is also the currently active role of the respective subject.
If this is not the case, the algorithm returns false (note that the executing-role of a task

instance can be allocated before allocating an executing-subject to this task instance,

see also discussion concerning Procedure 5 below)5. Subsequently, lines 5-7 check if a

typex exists that has a subject-binding relation to tasktype but cannot be executed by

the subject. In case such a typex exists, the algorithm returns false to ensure the con-

sistency requirement specified in Def. 3.4. In other words, a taskinstance must only be

allocated to a certain subject if this subject owns the right to perform the correspond-

ing tasktype as well as all subject-bound tasks. Next, lines 8-10 check if the subject is

already allocated to the instancey of a tasky which has a DME constraint to tasktype.

If the subject already is the executing-subject of such an instancey, the algorithm re-

turns false to ensure the consistency requirement specified in Def. 3.2. In other words,

in the same process instance a task instance must not be allocated to a particular subject

if this very subject is already allocated to the instance of a DME task type.

If none of the above checks returns false, Algorithm 8 finally reaches line 11 and

returns true – meaning that the corresponding subject may actually be allocated to the

corresponding taskinstance. Algorithm 8 may also be used to compile the set of all

subjects who are potentially allocatable to a certain task instance and then randomly

allocate the corresponding task instance to one of these subjects (see also [16]). Note

that we do not need to check static mutual-exclusion constraints when allocating a task,

because in conformance with algorithms 1 to 7 no subject can ever be assigned to two

SME tasks, neither directly nor transitively via a role-hierarchy (see also Def. 3.1)6.

5 Note that this algorithm checks the “dynamic allocatability” of a certain task instance. In prin-

ciple, it is also possible, of course, to allocate a task instance to a certain subject which is, via

one of its roles, authorized to execute the respective task instance, but currently has a different

active-role. In this case, the corresponding subject has to activate the correct role before it can

begin to handle the task. In this case, lines 3-4 of algorithm 8 can be omitted.
6 This means, Algorithm 8 assumes that the task-to-role and the role-to-subject assignments

defined at design-time remain unchanged during the execution of a process instance. How-

ever, if we have an environment where the design-time structures (such as the task-to-role and

subject-to-role assignments) can be modified at runtime, the following situation could arise: a

subjectx first executes a task1, then all roles are revoked from subjectx before another role

is assigned to subjectx which grants the permission to execute a task2 that is SME to task1.

In such an environment, Algorithm 8 must be extended with an additional check for SME con-

17

Procedure 5 Allocate a certain task instance to a certain subject.

Name: allocateTask

Input: s ∈ S, tasktype ∈ TT , processinstance ∈ PI

taskinstance ∈ ti(tasktype, processinstance)
1: set es(taskinstance) to s
2: set er(taskinstance) to ar(s)
3: for each typex ∈ allSubjectBindings(tasktype)
4: for each instancex ∈ ti(typex, processinstance)
5: set es(instancex) to s
6: set er(instancex) to ar(s)
7: for each tasky ∈ allRoleBindings(tasktype)
8: for each instancey ∈ ti(tasky, processinstance)
9: set er(instancey) to ar(s)

a)

b)

t
a

t
b

t
c

t
d

t
e t

f
t
g

r
2

t
d

r
1

seniors
1

t
e

t
a

t
gs

2

r
4

t
cr

3

seniors
3

t
b

t
fs

4

sb

rbsme dme

junior junior

Figure 8. Example for Procedure 5 (Design level)

After we used Algorithm 8 to check if a certain task instance can (potentially) be

allocated to a particular subject, we can actually allocate the task instance. Procedure

5 describes the steps that are performed to allocate a task instance. First, we define

the respective subject as the executing-subject of the taskinstance, and the subject’s

active role as the executing role of the taskinstance (see lines 1-2). Next, lines 3-6

perform a lookup to find all instances of subject-bound tasks (see also Procedure 1) and

define the executing-subject and the executing-role for each of the subject-bound tasks

straints. In particular this means that we would add an additional check for SME constraints

analogous to the DME constraint check in lines 8-10 of Algorithm 8 (see also Def. 3.1).

18

accordingly7. In particular, all instances of subject-bound tasks are allocated at the same

time to ensure the consistency requirements specified in Def. 3.3 and Def. 3.4. Finally,

lines 7-9 perform a lookup to find all role-bound tasks and set the executing-role of all

role-bound tasks. In particular, the executing-role of all role-bound tasks is allocated at

the same time to ensure the consistency requirement specified in Def. 3.3. This means

that the executing-role of a certain task instance may be allocated before allocating an

executing subject (see example below).

a) executing subject

executing role

s
1

s
1

r
1

r
1

r
1

t
ai

t
bi

t
ci

t
di

t
ei

t
fi

t
gi

t
ai

t
bi

t
ci

t
di

t
ei

t
fi

t
gi

b) executing subject

executing role

s
1

s
1

r
1

r
1

r
1

t
ai

t
bi

t
ci

t
di

t
ei

t
fi

t
gi

s
4

r
4

c) executing subject

executing role

s
1

s
1

r
1

r
1

r
1

t
ai

t
bi

t
ci

t
di

t
ei

t
fi

t
gi

s
4

r
4

s
3

r
3

d) executing subject

executing role

s
1

s
1

r
1

r
1

r
1

t
ai

t
bi

t
ci

t
di

t
ei

t
fi

t
gi

s
4

r
4

s
3

r
3

s
1

r
1

e) executing subject

executing role

s
1

s
1

r
1

r
1

r
1

t
ai

t
bi

t
ci

t
di

t
ei

t
fi

t
gi

s
4

r
4

s
3

r
3

s
1

r
1

s
2

f) executing subject

executing role

s
1

s
1

r
1

r
1

r
1

t
ai

t
bi

t
ci

t
di

t
ei

t
fi

t
gi

s
4

r
4

s
3

r
3

s
1

r
1

s
2

s
4

r
4

Figure 9. Example for Procedure 5 (Runtime task allocation)

7 One may argue that each task type contained in a particular process type is included at most

once and that all repetitions of a certain task type are modeled via loops. In this case, each

process instance would contain exactly one instance of each included task type and repeated

executions of a certain task are conducted via repeated executions of the same task instance

(which again includes an execution history to keep track of the different executions). However,

in procedure 5 lines 3-9 we assume the more general case (multiple independent instances of

the same task type within the same process instance) which includes the above case (at most

one occurrence with repeated executions modeled via loops and execution history).

19

Figure 8a) shows an example process consisting of seven task types ta to tg . For

the sake of simplicity, we chose a linear example process. However, the task allocation

procedure can be applied to arbitrary process definitions, of course. In addition to the

process flow, Figure 8a) also indicates different mutual-exclusion and binding relations

between some of the tasks. In particular, it shows a SME constraint between ta and tb,
a DME constraint between td and te, a subject-binding between ta and tg , and a role-

binding between te and tg . Moreover, Figure 8b) shows a corresponding process-related

RBAC model that includes four roles (r1 to r4) as well as four subjects (s1 to s4). Role

r1 is assigned to subjects s1 and s2, r3 is assigned to s3, and r4 is assigned to s4.

Now we give an example that demonstrates the allocation of executing-subjects and

executing-roles for a particular instance of the process type from Figure 8a) consider-

ing the process-related RBAC model from Figure8b). Figure 9 depicts an instance of

the respective process type and the successive allocation of the corresponding task in-

stances (in the example an additional index i is used to indicate task instances tai
to

tgi). First, we have to allocate tai
. Using Algorithm 8, we find that tai

is allocatable

to subjects s1 and s2. In our example, we choose to allocate tai
to s1, see Figure 9a).

Moreover, because ta has a subject-binding to tg (see Figure 8), we allocate tgi to s1 in

the same step. In addition, because of the role-binding between te and tg we also set the

executing-role of tei to r1, see Figure 9a). Thus, in order to ensure the runtime consis-

tency of the binding relations defined at the design-level (see Figure 8), the allocation

of tai
transitively affects tgi and tei (see also Procedure 5, Def. 3.3, and Def. 3.4).

Next, we use Algorithm 8 and Procedure 5 to allocate tbi to s4, tci to s3, and tdi
to

s1, see Figure 9b) - d). Subsequently, we have to allocate tei . In principle, instances of

te could be allocated to s1 or s2 (see Figure 8). However, because of the DME constraint

between td and te, instances of these tasks must be allocated to different subjects (see

also Algorithm 8 and Def. 3.2). In our example, we therefore have to allocate tei to s2
because tdi

was allocated to s1, see Figure 9e). Finally, we allocate tfi to s4 and thereby

have allocated all task instances, see Figure 9f)8.

6 Related Work

A number of contributions exist that discuss constraint specification or possible con-

flicts that may occur when defining SOD or BOD constraints. In [1], Ahn and Sandhu

present the RCL 2000 language for the specification of role-based authorization con-

straints. They also show how separation of duty constraints can be expressed in RCL

2000 and discuss different types of conflicts that may result from constraints speci-

fied via RCL 2000. Bertino et al. [2] present a language to express SOD constraints as

clauses in logic programs. Moreover, they present corresponding algorithms that check

the consistency of such constraints with the users/roles that execute the tasks in a work-

flow. Thereby they ensure that all tasks within a workflow are performed by predefined

users/roles only.

8 Note that the only purpose of this example is to demonstrate task allocation for one particular

instance of the process type shown in Figure 8a). Other aspects are temporarily ignored. For

example, one may check the satisfiability of the corresponding configuration before instantiat-

ing process instances (see, e.g., [6])

20

In [3], Botha and Eloff present an approach called conflicting entities administra-

tion paradigm. In particular, they discuss possible conflicts of static and dynamic SOD

constraints in a workflow environment and share a number of lessons learned from the

implementation of a prototype system. Tan et al. [22] define a model for constrained

workflow systems, including SOD and BOD constraints. They discuss different issues

concerning the consistency of such constraints and provide a set of formal consistency

rules that guarantee the definition of a sound constrained workflow specification. In [7]

Ferraiolo et al. present RBAC/Web, a model and implementation for RBAC in Web

servers. They also discuss the inheritance and resulting consistency issues of SOD con-

straints in role-hierarchies.

While most of these works use declarative formalisms, we provide imperative algo-

rithms for implementing SOD and BOD correctness checks9. Our work complements

previous contributions by providing generic algorithms and procedures to ensure the

design-time and runtime consistency of process-related RBAC models. The algorithms

result from our experiences in analyzing, designing, and implementing corresponding

software systems (see, e.g., [13,14,18,19,20,21]).

7 Conclusion

In this paper, we presented a set of algorithms that ensure the consistency of mutual-

exclusion and binding constraints in a business process context. In particular, the al-

gorithms ensure the design-time and runtime consistency of a process-related RBAC

model, with respect to the mutual-exclusion and binding constraints that are included

in the respective model. The algorithms are defined in a generic fashion that is inde-

pendent of a certain software platform or programming language. They were inspired

through our real-world RBAC and role engineering projects, where we repeatedly iden-

tified the need for such generic consistency checks. Thus, our algorithms complement

previous work on mutual-exclusion and binding constraints by providing a practical and

implementation-oriented perspective on constraint consistency.

In recent years, we see an increasing interest in process-aware information systems

in both research and practice. In this context, an increasing number of existing and

future systems will have to be extended with respective consistency checks. Among

other things, we already implemented the algorithms in an RBAC service, a general-

purpose policy framework (supporting authorization, obligation, and delegation poli-

cies), a runtime-engine for business processes, as well as in a role-engineering tool.

9 To be more precise, our algorithms especially check and ensure the design-time and runtime

consistency of SME, DME, role-binding, and subject-binding constraints defined on task types

(not on the roles which “aggregate” task types). Mutual exclusion and binding constraints de-

fined on task types can be used to enforce task-based (i.e. permission-based) SOD and BOD

constraints. In the context of a process-related RBAC model, the task-to-role assignment re-

lation determines the permissions of the roles. In other words, each task-to-role assignment

includes the permission for the corresponding role (resp. the subjects owning the role) to exe-

cute instances of this task type (see Section 3). In this paper, however, we do not discuss the

problem of verifying that a set of mutual exclusion constraints enforces a certain SOD policy

[11].

21

References

1. G.J. Ahn and R. Sandhu. Role-based Authorization Constraints Specification. ACM Trans-

actions on Information and System Security (TISSEC), 3(4), November 2000.

2. E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of Authorization

Constraints in Workflow Management Systems. ACM Transactions on Information and Sys-

tem Security (TISSEC), 2(1), February 1999.

3. R.A. Botha and J.H.P. Eloff. Separation of duties for access control enforcement in workflow

environments. IBM Systems Journal, 40(3), 2001.

4. F. Casati, S. Castano, and M.G. Fugini. Managing Workflow Authorization Constraints

through Active Database Technology. Information Systems Frontiers, 3(3), September 2001.

5. D.D. Clark and D.R. Wilson. A Comparison of Commercial and Military Computer Security

Policies. In Proc. of the IEEE Symposium on Security and Privacy, April 1987.

6. J. Crampton and H. Khambhammettu. Delegation and Satisfiability in Workflow Systems. In

Proc. of the 13th ACM Symposium on Access Control Models and Technologies (SACMAT),

June 2008.

7. D.F. Ferraiolo, J.F. Barkley, and D.R. Kuhn. A Role-Based Access Control Model and Ref-

erence Implementation within a Corporate Intranet. ACM Transactions on Information and

System Security (TISSEC), 2(1), February 1999.

8. C.K. Georgiadis, I. Mavridis, G. Pangalos, and R.K. Thomas. Flexible Team-Based Access

Control Using Contexts. In Proc. of the 6th ACM Symposium on Access Control Models and

Technologies (SACMAT), May 2001.

9. K. Irwin, T. Yu, and W.H. Winsborough. Enforcing Security Properties in Task-based Sys-

tems. In Proc. of the 13th ACM Symposium on Access Control Models and Technologies

(SACMAT), June 2008.

10. S. Kunz, S. Evdokimov, B. Fabian, B. Stieger, and M. Strembeck. Role-Based Access Con-

trol for Information Federations in the Industrial Service Sector. In Proc. of the 18th Euro-

pean Conference on Information Systems (ECIS), June 2010.

11. N. Li, M.V. Tripunitara, and Z. Bizri. On Mutually Exclusive Roles and Separation-of-Duty.

ACM Transactions on Information and System Security (TISSEC), 10(2), May 2007.

12. N. Li and Q. Wang. Beyond separation of duty: An algebra for specifying high-level security

policies. Journal of the ACM (JACM), 55(3), July 2008.

13. J. Mendling, K. Ploesser, and M. Strembeck. Specifying Separation of Duty Constraints in

BPEL4People Processes. In Proc. of the 11th International Conference on Business Informa-

tion Systems (BIS), volume 7 of Lecture Notes in Business Information Processing (LNBIP).

Springer-Verlag, May 2008.

14. G. Neumann and M. Strembeck. Design and Implementation of a Flexible RBAC-Service in

an Object-Oriented Scripting Language. In Proc. of the 8th ACM Conference on Computer

and Communications Security (CCS), November 2001.

15. S. Oh and S. Park. Task-role-based access control model. Information Systems, 28(6),

September 2003.

16. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow Resource

Patterns: Identification, Representation and Tool Support. In Proc. of the 17th International

Conference on Advanced Information Systems Engineering (CAiSE), Lecture Notes in Com-

puter Science (LNCS), Vol. 3520, Springer Verlag, June 2005.

17. R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control

Models. IEEE Computer, 29(2), February 1996.

18. M. Strembeck. Conflict Checking of Separation of Duty Constraints in RBAC - Implemen-

tation Experiences. In Proc. of the Conference on Software Engineering (SE 2004), February

2004.

22

19. M. Strembeck. A Role Engineering Tool for Role-Based Access Control,. In Proc. of the 3rd

Symposium on Requirements Engineering for Information Security (SREIS), August 2005.

20. M. Strembeck. Scenario-Driven Role Engineering. IEEE Security & Privacy, 8(1), Jan-

uary/February 2010.

21. M. Strembeck and G. Neumann. An Integrated Approach to Engineer and Enforce Context

Constraints in RBAC Environments. ACM Transactions on Information and System Security

(TISSEC), 7(3), August 2004.

22. K. Tan, J. Crampton, and C.A. Gunter. The Consistency of Task-Based Authorization Con-

straints in Workflow Systems. In Proc. of the 17th IEEE Workshop on Computer Security

Foundations (CSFW), June 2004.

23. R.K. Thomas and R.S. Sandhu. Task-based authorization controls (TBAC): A family of

models for active and enterprise-oriented authorization management. In Proc. of the IFIP

WG11.3 Conference on Database Security, August 1997.

24. J. Wainer, P. Barthelmes, and A. Kumar. W-RBAC - A Workflow Security Model Incorporat-

ing Controlled Overriding of Constraints. International Journal of Cooperative Information

Systems (IJCIS), 12(4), December 2003.

25. J. Warner and V. Atluri. Inter-Instance Authorization Constraints for Secure Workflow Man-

agement. In Proc. of the 11th ACM Symposium on Access Control Models and Technologies

(SACMAT), June 2006.

