
Extending BPEL4WS for Multiple Instantiation

Jan Mendling, Mark Strembeck, Gustaf Neumann
Department of Information Systems, New Media Lab

Vienna University of Economics and BA
{firstname.lastname}@wu-wien.ac.at

Abstract: A means to define multiple activity instantiation is an important feature of
a business process modelling language. In this paper we suggest to extend BPEL4WS
with structured activities for multiple instantiation. In particular, we propose to extend
BPEL4WS with a collect and a broadcast activity to model multiple instance
behavior as well as array data structures to handle messages of multiple parties that
act according to the same role.

1 Introduction

The Business Process Execution Language for Web Services (BPEL4WS) [ACD+03] is
the de facto standard for XML-based business process modelling. Although it provides a
rich set of primitives to specify Web Service compositions, it does not support multiple in-
stantiation (see e.g. [WvdADtH03]). However, often activities need to be modelled which
are executed multiple times within the same process instance without knowing the number
of parallel executions a priori. This is especially the case for interorganizational business
processes that often include one-to-many interactions. Typically, they can be divided into
two parts (see e.g. [Ba98]) as the example of an online auction process illustrates:

1. One-to-many phase: A set of potential partners is created . In an auction process
each bidder can be regarded as a potential business partner. The bidder with the best
offer is chosen as the partner for further interaction.

2. Bilateral phase: The offerer and the auction winner continue the process in a bilat-
eral way. The winner receives a bill, and the offerer initiates the shipment.

Online auctions are only one example of such one-to-many situations in business pro-
cesses. The interaction between a teacher and multiple students or a public invitation to
tender are further examples. The Business Process Modeling Notation (BPMN) [Wh04]
provides dedicated control flow elements to model multiple instantiation. However, such
language constructs are not included in BPEL4WS. Although corresponding work-arounds
exist (see e.g. [WvdADtH03]), they are complicated. Nevertheless, the bilateral interac-
tion in the second phase of an interorganizational process can be modelled with BPEL4WS
in a straight forward manner.

2 BPEL4WS and Multiple Instantiation

BPEL4WS is an XML-based language for the definition of business processes based on
Web Services. In this paper, we focus on activities, data flow, and partners in BPEL4WS
processes. For a complete discussion of BPEL4WS see [ACD+03].

In essence, BPEL4WS defines conversational relationships between two parties via a so-
called partnerLink that links one internal party to one corresponding external party. Pro-
cess related data, e.g. message content, is stored in variables. Message exchange and
logical operations are modelled via basic activities including the receive activity to re-
ceive a message; invoke for invocation of remote Web Service activities; or assign for
data operations on variables. The control flow logic of a BPEL4WS process is defined
through structured activities: flow for among others parallel execution; sequence for se-
quential execution; switch for branching related to a calculated value; while for loops;
compensate for compensation actions; and pick for branching in response to an event or
receipt of different messages.

Listing 1

<process A>
<while condition=“ C1“>

<invoke “process B“ ...
</invoke>

</while>
</process>

1
2
3
4
5
6

Listing 2

<process B>
<receive “process A“ ...

createInstance=“yes“
</receive>

</process>

1
2
3
4
5

Listing 3

moreInstances:=true
i:=0
<while condition=“moreInstances OR i>0“>

<pick>
<onMessage “StartNewActivity A“>

<invoke “A“ ... />
<assign “i:=i+1“/>

</onMessage>
<onMessage “ActivityFinished A“>

<assign “i:=i-1“/>
</onMessage>
<onMessage “NoMoreInstances“>

<assign “moreInstance:=false“/>
</onMessage>

</pick>
</while>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 1: Work-arounds for multiple instance modeling in BPEL4WS (abbreviated syntax).

Figure 1 illustrates two work-arounds for modeling multiple instances in BPEL4WS as
presented in [WvdADtH03]. In listings 1 and 2, each of multiple instances in process
A is executed via a spawned child process B. If the spawned instances must be syn-
chronized, an approach as shown in listing 3 is needed. Here, the pick activity creates
new instances and keeps track of the number of active instances. The loop exits if no
more active instances exist (i = 0) and no new instances need to be created. In [Wh04]
other work-arounds for multiple instance modelling in BPEL4WS are presented. Never-
theless, the lack of a native means to define structured activities for multiple instantiation
in BPEL4WS makes modelling of processes like an online auction complicated. This
missing feature might even prove to be a roadblock for BPEL4WS adaption.

In order to allow for multiple instantiation, the following issues have to be addressed:

• Array of External Parties: In a multiple instantiation activity different partners may
act in the same role. The respective partnerLink should include an attribute to
indicate such capabilities. This implies some correlation mechanism to identify
messages of individual parties acting in the same role.

• Array of Messages: For data handling of multiple parties, we propose to extend
BPEL4WS with arrays and array related operations. An array declaration should
be similar to a variable declaration including an additional partnerLink reference
in order to correlate messages stored in the array to its sender.

• Structured Activities for Multiple Instantiation: From our experiences two kinds of
structured multiple instance activities are needed to extend BPEL4WS:

1. An activity to model the receipt of multiple messages of different parties acting
as the same partnerRole, as for example in an online auction where multiple
parties act as bidders and send bid messages. We propose a new BPEL4WS
activity called collect to address this need. It should support different syn-
chronization conditions like time related conditions as duration, deadline, or
maximum time-span between new instantiations; message content related con-
ditions; or maximum amount of messages to be received.

2. Often similar messages must be sent to a set of external parties who were
identified via a previous collect activity. In the auction example, each bidder
receives a notification after the auction. For this purpose, we propose to define
a new BPEL4WS element called broadcast. It should rely on an array and it
should be able to sort the listed messages similar to a sort statement in XSLT
[Cl99]. Then, similar to a switch activity in BPEL4WS it should be able to
specify different paths of processing.

collect

SOAP Endpoint
“URI 1"

partnerLink “bidder“ array “bidArray“

bidArray(1) = message 1(“URI 1" , 1)

SOAP Endpoint
“URI 2"

(“URI 2" , 2) bidArray(2) = message 2message 2

message 3 (“URI 1" , 3) bidArray(3) = message 3

message 1

... ...

...

Figure 2: Data handling of collect activities.

Figure 2 illustrates how external parties and related messages can be administrated via
collect. Each receipt of a message creates a new instance of activities nested in the cor-
responding collect. Moreover, the process engine has to store the following information:

• The message is stored in an associative array bidArray where n is the identifier of
the current activity instance (bidArray(n) = currentMessage) .

• The pair (currentEndpoint,n) is stored in the partnerLink bidder array.

Each individual activity instance can only access its “own” messages which are stored in an
array at a certain position. For example an individual instance a works with bidArray like
it was a variable. Actually, the variable represents the array at position a. This behavior
is similar to data handling in FLOWer which is described in Workflow Data Pattern 4 in
[RtHEvdA04]. The respective partnerLink manages an array of (endpoint,n) pairs that
correlates the position of messages in an array to SOAP endpoints. Thus, each individual
instance perceives only one endpoint associated to the partnerLink and one variable. As
soon as a collect is completed, the whole array can be accessed by subsequent activities
and from each array position, the corresponding endpoint can be identified. A downstream
broadcast can then use the relationship between array positions and endpoints to send
multiple messages to multiple parties. In a compensate activity or a fault handler, this
mechanism can be exploited to undo the effects of a complete collect activity.

<process auction>
<partnerLink name=“bidder“ multiple=“yes“ .../>
<array name=“bidArray“ messageType=“bid“ partnerLink=“bidder“/ >
<sequence>

<collect for=“P7D“> <!-- XML Schema Simple Type Duration -->
<receive partnerLink=“bidder“ variable=“bidArray“ .../>
<invoke partnerLink=“website“ operation=“newBid“ .../>

</collect>
<broadcast array=“bidArray“>

<sort select=“bid/price“ order=“descending“>
<case condition=“sort-position()=1“>

<invoke partnerLink=“bidder“ operation=“sendInvoice“ .../>
</case>
<otherwise>

<invoke partnerLink=“bidder“ operation=“sendReport“ .../>
</otherwise>

</broadcast>
</sequence>

</process>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Figure 3: Listing of an auction process expressed with collect and broadcast.

Figure 3 shows a potential application of collect and broadcast structured activities in
an auction process. The partnerLink is declared to be multiple. That means it must be
able to handle multiple external partners playing the same role in parallel. The array

includes a link to a partnerLink in order to correlate messages to its sender. When a
process instance is created, collect gets activated for seven days (expressed as P7D, in
conformance with XML Schema simple type duration [BLM+01, BM01], see Line 5). It
is able to receive multiple bids and for each of those it updates the auction web-site via an
invoke. The bids are stored in an array named bidArray. After seven days the auction
is closed and the broadcast activity is activated. It sorts the messages of the bidArray

according to the XPath sort statement [CD99]. Different execution paths for the messages
of the bidArray are specified with case and otherwise elements: the invoice is sent to the
bidder who offered the highest price, other bidders receive a report of the auction.

3 Related Work

In [vdAtHKB03] four different control flow patterns addressing multiple instantiation are
distinguished. The Multiple Instantiation without Synchronization pattern (Pattern 12) de-
scribes the spawning of activities that do not need to be synchronized later in the process.
Patterns 13 to 15 describe multiple instantiation with synchronization. The general case
(Pattern 15) captures multiple instantiation without a priori runtime knowledge about how
many instances may be active. An analysis of BPEL4WS with respect to these workflow
patterns is reported in [WvdADtH03]. In [vdAtH03] a Petri net based workflow language
called YAWL is defined to capture the semantics of the above mentioned workflow pat-
terns (excluding the implicit termination pattern). A different approach is presented in
[MR03]: multiple instance patterns are modelled as so-called Reference nets which can
be used to control arbitrary java applications. The analogy between multiple instances
and single instance split and join control flow patterns is illustrated in [ZSY02] where
Zhou et al. define five multiple instance patterns that correspond to branching patterns of
single instance control flows reported in [vdAtHKB03]. The Business Process Modeling
Notation (BPMN) [Wh04] also stresses the importance of multiple instantiation patterns
by providing a dedicated syntax element. Furthermore, the broadcast activity presented
in this paper can be related to communication Pattern 6 introduced in [RMB01]. Recent
research into Workflow Data Patterns identifies three different ways to handle data of mul-
tiple instances [RtHEvdA04]. Yet, our approach addresses the handling of multiple parties
in multiple activity instantiation.

4 Conclusion and Future Work

In this paper, we presented a concept to extend BPEL4WS with multiple instantiation.
For this purpose, we proposed two additional structured activities, the collect and the
broadcast activity, with related partnerLink and array elements. In our opinion, such
modelling constructs are a prerequisite to provide for a comprehensive modelling of Web
Service based business processes via BPEL4WS. One important goal in our future work is
to implement a BPEL4WS process engine including the multiple instantiation extensions
outlined in this paper.

References

[ACD+03] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., und Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1. Specification. BEA
Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems. 2003.

[Ba98] Bakos, Y.: The Emerging Role of Electronic Marketplaces on the Internet. Com-
munications of the ACM. 41(8):35–42. 1998.

[BLM+01] Beech, D., Lawrence, S., Moloney, M., Mendelsohn, N., und Thompson, H. S.:
XML Schema Part 1: Structures. W3C Recommendation 02 May. World Wide
Web Consortium. 2001.

[BM01] Biron, P. V. und Malhorta, A.: XML Schema Part 2: Datatypes. W3C Recommen-
dation 02 May. World Wide Web Consortium. 2001.

[CD99] Clark, J. und DeRose, S.: XML Path Language (XPath) Version 1.0. W3C Recom-
mendation 16 November. World Wide Web Consortium. 1999.

[Cl99] Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C Recommendation 16
November. World Wide Web Consortium. 1999.

[MR03] Moldt, D. und Rölke, H.: Pattern Based Workflow Design Using Reference Nets.
In: Proceedings of Business Process Management, International Conference, BPM
2003, LNCS 2678. S. 246–260. 2003.

[RMB01] Ruh, W. A., Maginnis, F. X., und Brown, W. J.: Enterprise Application Integration:
A Wiley Tech Brief. John Wiley and Sons, Inc. 2001.

[RtHEvdA04] Russella, N., ter Hofstede, A. H. M., Edmond, D., und van der Aalst, W. M. P.:
Workflow data patterns. Technical report. Queensland University of Technology.
2004.

[vdAtH03] van der Aalst, W. M. P. und ter Hofstede, A. H. M.: YAWL: Yet Another Workflow
Language (Revised Version). QUT Technical report, FIT-TR-2003-04. Queensland
University of Technology. 2003.

[vdAtHKB03] van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., und Barros, A. P.:
Workflow Patterns. Distributed and Parallel Databases. 14(1):5–51. July 2003.

[Wh04] White, S. A.: Business Process Modeling Notation. BPMN 1.0,
http://www.bpmn.org. Business Process Modeling Initiative. 2004.

[WvdADtH03] Wohed, P., van der Aalst, W. M. P., Dumas, M., und ter Hofstede, A. H. M.: Analy-
sis of Web Service Composition Languages: The Case of BPEL4WS. In: Proceed-
ings of Conceptual Modeling - ER 2003, LNCS 2813. S. 200–215. 2003.

[ZSY02] Zhou, J., Shi, M., und Ye, X.: On Pattern-based Modeling for Multiple Instances
of Activities in Workflows. In: Proc of the 1st International Workshop on Grid and
Cooperative Computing, Hainan. S. 723–736. 2002.

