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Context: A distributed business process is executed in a distributed computing environment. The service-
oriented architecture (SOA) paradigm is a popular option for the integration of software services and exe-
cution of distributed business processes. Entailment constraints, such as mutual exclusion and binding
constraints, are important means to control process execution. Mutually exclusive tasks result from
the division of powerful rights and responsibilities to prevent fraud and abuse. In contrast, binding con-
straints define that a subject who performed one task must also perform the corresponding bound
task(s).
Objective: We aim to provide a model-driven approach for the specification and enforcement of task-
based entailment constraints in distributed service-based business processes.
Method: Based on a generic metamodel, we define a domain-specific language (DSL) that maps the dif-
ferent modeling-level artifacts to the implementation-level. The DSL integrates elements from role-based
access control (RBAC) with the tasks that are performed in a business process. Process definitions are
annotated using the DSL, and our software platform uses automated model transformations to produce
executable WS-BPEL specifications which enforce the entailment constraints. We evaluate the impact
of constraint enforcement on runtime performance for five selected service-based processes from exist-
ing literature.
Results: Our evaluation demonstrates that the approach correctly enforces task-based entailment con-
straints at runtime. The performance experiments illustrate that the runtime enforcement operates with
an overhead that scales well up to the order of several ten thousand logged invocations. Using our DSL
annotations, the user-defined process definition remains declarative and clean of security enforcement
code.
Conclusion: Our approach decouples the concerns of (non-technical) domain experts from technical
details of entailment constraint enforcement. The developed framework integrates seamlessly with
WS-BPEL and the Web services technology stack. Our prototype implementation shows the feasibility
of the approach, and the evaluation points to future work and further performance optimizations.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

The Service-Oriented Architecture (SOA) metaphor has been
elaborated by different communities to address different problem
areas (such as enterprise application integration or business pro-
cess management, see, e.g., [1]). Amongst others, it can be seen
as a set of technology independent concepts for distributed com-
puting environments. In this context, it has emerged as a popular
paradigm for developing loosely coupled distributed systems
[2,3]. Today, Web services [4] are a commonly used technology
which serves as a foundation of SOAs, as well as distributed busi-
ness processes. A distributed business process is an intra-organiza-
tional or cross-organizational business process executed in a
distributed computing environment (such as SOA). Business
processes often require the definition and enforcement of pro-
cess-related security policies. For example, such requirements
result from internal business rules of an organization, or service-
level agreements (SLAs) [5] with customers. In addition, numerous
regulations and IT standards exist that pose compliance require-
ments for the corresponding systems. In particular, IT systems
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must comply with laws and regulations such as the Basel II/III Ac-
cords, the International Financial Reporting Standards (IFRSs), or
the Sarbanes–Oxley Act (SOX). For instance, one important part
of SOX compliance is to provide adequate support for definition
and enforcement of process-related security policies (see, e.g.,
[6–8]).

Role-based access control (RBAC) [9,10] is a de facto standard
for access control in both research and industry. In the context of
RBAC, roles are used to model different job positions and scopes
of duty within an information system. These roles are equipped
with the permissions to perform their respective tasks. Human
users and other active entities (subjects) are assigned to roles
according to their work profile [11,12]. A process-related RBAC
model (see, e.g., [13,14]) enables the definition of permissions
and entailment constraints for the tasks that are included in busi-
ness processes. A task-based entailment constraint places some
restriction on the subjects who can perform a task x given that a
certain subject has performed another task y. Entailment con-
straints are an important means to assist the specification and
enforcement of compliant business processes (see, e.g., [15–20]).

Mutual exclusion and binding constraints are typical examples
of entailment constraints. Mutual exclusion constraints can be sub-
divided in Static Mutual Exclusion (SME) and Dynamic Mutual Exclu-
sion (DME) constraints. A SME constraint defines that two tasks
(e.g. Order Supplies and Approve Payment) must never be assigned
to the same role and must never be performed by the same subject
(to prevent fraud and abuse). This constraint is global with respect
to all process instances in an information system. In contrast, DME
refers to individual process instances and can be enforced by defin-
ing that two tasks must never be performed by the same subject in
the same process instance.

In contrast to mutual exclusion constraints, binding constraints
define that two bound tasks must be performed by the same entity.
In particular, a subject-binding constraint defines that the same
individual who performed the first task must also perform the
bound task(s). Similarly, a role-binding constraint defines that
bound tasks must be performed by members of the same role
but not necessarily by the same individual.
Fig. 1. Approach overview.
1.1. Motivation

As outlined above, entailment constraints are an important
means to assist the specification of business processes and control
their execution. Yet, the runtime enforcement of entailment con-
straints in distributed SOA business processes is a complex task,
and currently there is still a lack of straightforward solutions to
achieve this task. This complexity arises from the fact that the
tasks of distributed business processes are performed on indepen-
dent, loosely coupled nodes in a network. One of the advantages of
loosely coupled systems is that the different nodes (i.e. services)
can execute their tasks independently of other nodes. However,
the enforcement of entailment constraints in a distributed system
often requires knowledge that is not available to a single node.

Moreover, to enforce access control policies in a software sys-
tem, the resulting policy models must also be mapped to the
implementation level. To account for different platforms and
implementation styles, it is important to first establish the enforce-
ment on a generic and conceptual level, in order to map it to con-
crete platforms (e.g., SOA, as in our case).

Evidently, enforcement of RBAC policies and constraints has an
impact on the execution time of business processes. Depending on
the complexity of the constraints and the amount of data that
needs to be evaluated, the impact will be more or less severe.
While the theory behind RBAC and entailment constraints in busi-
ness processes has been intensively studied in the past, less atten-
tion has been devoted to the runtime enforcement, including
performance impacts, of such constraints.

With respect to the rapidly increasing importance of process-
aware information systems, the correct and efficient implementa-
tion of consistency checks in these systems is an important issue.
Therefore, the runtime performance needs to be evaluated thor-
oughly in order to ensure the efficient execution of business pro-
cesses that are subject to access constraints.
1.2. Approach synopsis

This paper builds on our previous work from [14,21]. In [14], we
presented a generic approach for the specification of process-re-
lated RBAC models including a corresponding UML extension (see
also Sections 2 and 3). In [21], we discussed an approach for iden-
tity and access management in a SOA context. However, while the
enforcement of entailment constraints in a distributed system is a
very complex task (see discussion in Section 1.1), neither [14] nor
[21] address this important issue. In this paper, we integrate the
approaches from [14,21] and provide multiple novel contributions.
In particular, we present an integrated, model-driven approach for
the definition and enforcement of RBAC-related entailment con-
straints in distributed SOA business processes. We extend our tex-
tual DSL from [21] with language primitives for the specification of
entailment constraints. Furthermore, we significantly extended
our implementation and provide an extensive performance evalu-
ation of our solution.

In general, distributed business processes involve stakeholders
with different background and expertise. A technical RBAC model
may be well-suited for software architects and developers, but
for non-technical domain experts an abstracted view is desirable.
In the context of model-driven development (MDD) [22–24], a sys-
tematic approach for DSL (domain-specific language) development
has emerged in recent years (see, e.g., [25–28]). A DSL is a tailor-
made (computer) language for a specific problem domain. To en-
sure compliance between models and software platforms, models
defined in a DSL are mapped to code artifacts via automated mod-
el-transformations (see, e.g., [29–31]). In our approach, the use of a
DSL for RBAC constraints allows us to abstract from technical de-
tails and involve domain experts in the security modeling
procedure.

Fig. 1 depicts a high-level overview of our approach, including
the involved stakeholders, system artifacts, and relationships be-
tween them. At design time, the security experts author RBAC
DSL statements to define the RBAC model and entailment con-
straints. IT specialists implement Web services and define business
processes on top of the services. At deployment time, the process
definition files are automatically enriched with tasks for identity
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and access management (IAM) that conform to the corresponding
entailment constraints. The business process is instantiated and
executed by human individuals, and the IAM tasks ensure that
the process conforms to the constraints defined in the RBAC model.
A policy enforcement point (PEP) component intercepts all service
invocations to block unauthorized access (see also [21]).

For the sake of platform independence, we model business pro-
cesses using UML activity diagrams [32]. In particular, we use the
BusinessActivities extension [14], which enables the definition of
process-related RBAC models via extended UML activity models.
Based on the generic solution, we discuss a concrete instantiation
and show how the approach is mapped to the Web services tech-
nology stack, including the Business Process Execution Language
for Web services (WS-BPEL) [33].

The remainder of this paper is structured as follows. In Section 2,
we present a motivating scenario. Section 3 introduces a generic
metamodel for specification of process-related RBAC models
including entailment constraints. Section 4 describes the transfor-
mation procedure that enriches the process definitions with IAM
tasks to enforce runtime-compliance. In Section 5, we present a
concrete WS-BPEL-based application of our approach. Implemen-
tation-related details are given in Section 6, and in Section 7 we
evaluate different aspects of our solution. Section 8 discusses re-
lated work, and Section 9 concludes with an outlook for future
work.
Fig. 2. Patient examination scenario modeled as UML business activity.
2. Motivating scenario

We illustrate the concepts of this paper based on a scenario ta-
ken from the e-health domain. The scenario models the workflow
of orthopedic hospitals which treat fractures and other serious
injuries. The hospitals are supported by an IT infrastructure orga-
nized in a SOA, implemented using Web services. The SOA provides
Web services for patient data, connects the departments of differ-
ent hospitals, and facilitates the routine processes. Because the
treatment of patients is a critical task and the personal data consti-
tute sensitive information, security must be ensured and a tailored
domain-specific RBAC model needs to be enforced. Task-based
entailment constraints in the form of mutual exclusion and binding
constraints are a crucial part of the system.
2.1. Patient examination business process

A core procedure in the hospital is the patient examination,
illustrated in Fig. 2 as a Business Activity [14] model. We assume
that the process is implemented using a business process engine
and that the actions (or tasks) represent the invocations of services.
The arrows between the actions indicate the control flow of the
process. Note that all tasks are backed by technical services, how-
ever, part of the tasks are not purely technical but involve some
sort of human labor or interaction.

The top part of the figure shows the BusinessActivity model of
the process, and the bottom part contains an excerpt of the RBAC
definitions that apply to the scenario. We define three types of
roles (Staff, Physician, Patient), each with a list of tasks they are
permitted to execute, and four subjects (John, Jane, Bob, Alice),
each with roles assigned to them. The names of permitted tasks
of a role are displayed after the string ‘‘Task:’’. Note, however, that
this is only one possible graphical presentation option to display
the association between roles and actions (see [14]). Role inheri-
tance hierarchies are modeled using the role-to-role assignment
(rrAssign) relationship (senior-roles inherit the permissions of
junior-roles, e.g., Physician inherits from Staff). The role-to-subject
assignment (rsAssign) association is used to assign roles to subjects.
The first step in the examination process (see Fig. 2) is to re-
trieve the personal data of the patient. To demonstrate the cross-
organizational character of this scenario, suppose that the patient
has never been treated in our example hospital (H1) before, but
has already received medical treatment in a partner hospital
(H2). Consequently, H1 obtains the patient’s personal data via
the Web services of H2. Secondly, the patient is assigned to a phy-
sician. After the patient has been assigned, the physician requests
an X-ray image from the responsible department. The physician
then decides whether additional data are required (e.g., informa-
tion about similar fractions or injuries in the past). If so, the busi-
ness process requests historical data from partner hospitals which
also participate in the SOA. For privacy reasons, the historical data
are only disclosed to the patient herself, and the Get Patient History
service task has to execute under the role Patient (see Fig. 2). An-
other situation that requires additional data is the case of an emer-
gency. If the emergency demands for immediate surgery, it is
important to determine historical data about any critical condi-
tions or diseases that might interfere with the surgery (task Get
Critical History). To avoid that a single physician takes wrong deci-
sions in an emergency, it is mandatory to get the opinion of a
second expert. Finally, the task Decide On Treatment completes
the examination and triggers the (physical) treatment.

2.2. Entailment constraints

In this paper, we support four types of entailment constraints
which we briefly discuss in the following. The scenario process in
Fig. 2 contains examples for each type of constraint.

� Static Mutual Exclusion (SME): The SME constraint between Get
Expert Opinion and Get Patient History from Partner Hospital
defines that the two tasks must never be executed by the same
subject or role, across all process instances. This constraint is
reasonable as we need to explicitly separate the permissions
of patients and physicians.
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� Dynamic Mutual Exclusion (DME): The DME constraint for Get
Critical History and Get Expert Opinion requires that, for each
instance of the process, these two tasks are executed by
different subjects. This ensures that the treatment decision in
an emergency clearly depends on the medical assessment of
two individual physicians.
� Subject Binding (SBind): An example SBind constraint is the Get

Patient History From Partner Hospital task, which executes multi-
ple times in a loop. To ensure that each iteration is done by the
same subject, the SBind attribute reflexively links to the same
task. A second subject binding exists between Get Critical His-
tory and Decide on Treatment.
� Role Binding (RBind): The process defines a role-binding con-

straint which demands that the Get Personal Data and Assign
Physician are performed by the same role (although potentially
different subjects).

3. Generic metamodel for specification of entailment
constraints in business processes

This section gives an overview of the generic metamodel for
specification of process-related RBAC models including entailment
constraints. To provide a self-contained view in this paper,
Section 3.1 repeats the core definitions from [14], which form
the basis for our approach. In Section 3.2, we introduce the textual
RBAC DSL which allows to define entailment constraints in a sim-
ple textual syntax and enables a seamless mapping of UML-based
process-related RBAC models (see [14]) to the implementation le-
vel. The core part of the textual RBAC DSL is based on [21]. For this
paper, it has been extended with capabilities for the specification
of entailment constraints.

3.1. Business activity RBAC models

Definition 1 (Business Activity RBAC Model). A Business Activity
RBAC Model BRM = (E,Q,D) where E = S [ R [ PT [ PI [ TT [ TI refers
to pairwise disjoint sets of the metamodel, Q = rh [ tra [ r-
sa [ ptd [ pi [ ti [ es [ er to mappings that establish relationships,
and D = sb [ rb [ sme [ dme to binding and mutual exclusion
constraints, such that:

� For the sets of the metamodel:
– An element of S is called Subject. S – ;.
– An element of R is called Role. R – ;.
– An element of PT is called Process Type. PT – ;.
– An element of PI is called Process Instance.
– An element of TT is called Task Type. TT – ;.
– An element of TI is called Task Instance.

In the list below, we iteratively define the partial mappings of
the Business Activity RBAC Model and provide corresponding
formalizations (P refers to the power set, for further details see
[14]):

1. The mapping rh : R # PðRÞ is called role hierarchy. For
rh(rs) = Rj we call rs senior role and Rj the set of direct junior
roles. The transitive closure rh⁄ defines the inheritance in
the role hierarchy such that rh�ðrsÞ ¼ Rj� includes all direct
and transitive junior roles that the senior role rs inherits
from. The role hierarchy is cycle-free, i.e. for each
r 2 R:rh⁄(r) \ {r} = ;.

2. The mapping tra : R # PðTTÞ is called task-to-role assign-
ment. For tra(r) = Tr we call r 2 R role and Tr # TT is called
the set of tasks assigned to r. The mapping tra�1 : TT # PðRÞ
returns the set of roles a task is assigned to (the set of roles
owning a task).
This assignment implies a mapping task ownership
town : R # PðTTÞ, such that for each role r 2 R the tasks
inherited from its junior roles are included, i.e. townðrÞ ¼
S

rinh2rh�ðrÞtraðrinhÞ [ traðrÞ. The mapping town�1 : TT # PðRÞ
returns the set of roles a task is assigned to (directly or tran-
sitively via a role hierarchy).

3. The mapping rsa : S # PðRÞ is called role-to-subject assign-
ment. For rsa(s) = Rs we call s 2 S subject and Rs # R the set
of roles assigned to this subject (the set of roles owned by
s). The mapping rsa�1 : R # PðSÞ returns all subjects assigned
to a role (the set of subjects owning a role).
This assignment implies a mapping role ownership
rown : S # PðRÞ, such that for each subject s 2 S all direct
and inherited roles are included, i.e. rown(s) =

S
r2rsa(s)

rh⁄(r) [ rsa(s). The mapping rown�1 : R # PðSÞ returns all
subjects assigned to a role (directy or transitively via a role
hierarchy).

4. The mapping ptd : PT # PðTTÞ is called process type defini-
tion. For ptdðpTÞ ¼ TpT

we call pT 2 PT process type and
TpT

# TT the set of task types associated with pT.
5. The mapping pi : PT # PðPIÞ is called process instantiation.

For pi(pT) = Pi we call pT 2 PT process type and Pi # PI the set
of process instances instantiated from process type pT.

6. The mapping ti : ðTT � PIÞ# PðTIÞ is called task instantia-
tion. For ti(tT,pI) = Ti we call Ti # TI set of task instances,
tT 2 TT is called task type and pI 2 PI is called process instance.

7. Because role-to-subject assignment is a many-to-many
relation (see Def.1.3), more than one subject may be able
to execute instances of a certain task type. The mapping
es:TI ´ S is called executing-subject mapping. For es(t) = s
we call s 2 S the executing subject and t 2 TI is called executed
task instance.

8. Via the role hierarchy, different roles may posses the permis-
sion to perform a certain task type (see Def.1.1 and Def.1.2).
The mapping er:TI ´ R is called executing-role mapping. For
er(t) = r we call r 2 R the executing role and t 2 TI is called exe-
cuted task instance.

9. The mapping sb : TT # PðTTÞ is called subject-binding. For
sb(t1) = Tsb we call t1 2 TT the subject binding task and Tsb # TT

the set of subject bound tasks.
10. The mapping rb : TT # PðTTÞ is called role-binding. For

rb(t1) = Trb we call t1 2 TT the role binding task and Trb # TT

the set of role bound tasks.
11. The mapping sme : TT # PðTTÞ is called static mutual exclu-

sion. For sme(t1) = Tsme with Tsme # TT we call each pair
t1 2 TT and tx 2 Tsme statically mutual exclusive tasks.

12. The mapping dme : TT # PðTTÞ is called dynamic mutual
exclusion. For dme(t1) = Tdme with Tdme # TT we call each
pair t1 2 TT and tx 2Tdme dynamically mutual exclusive tasks.

3.2. RBAC modeling for business processes

Fig. 3 depicts the core RBAC metamodel and its connection with
the core elements of the BusinessActivity metamodel. In particular,
Fig. 3 outlines how we extended our DSL from [21] to include pro-
cess-related RBAC entailment constraints (see [14]). The different
model elements are described below.

A ProcessInstance has a unique instanceID, a ProcessType,
and is composed of multiple TaskInstance objects which are
again instances of a certain TaskType. The class TaskType has a
name and four reflexive associations that define mutual exclusion
and binding constraints. Subjects are identified by a name attri-
bute and are associated with an arbitrary number of Roles, which
are themselves associated with Permissions to execute certain
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Operations. A TaskType in the BusinessActivity metamodel cor-
responds to an Operation in the RBAC metamodel. Roles may in-
herit permissions from other roles (association seniorRole). In
our approach, we directly associate Web service instances with
Resources. That is, a subject that attempts to invoke a Web ser-
vice operation op on a service resource res must be associated with
a role that holds a permission to execute op on res. A detailed
description of the BusinessActivity metamodel and corresponding
OCL (Object Constraint Language) constraints can be found in
[14]. We utilize the core parts of this model and focus on the map-
ping of the RBAC constraints to a textual DSL and to business pro-
cess execution platforms, as illustrated for WS-BPEL in Section 5.
3.3. RBAC DSL statements

Our RBAC DSL is implemented as an embedded DSL [27] and is
based on the scripting language Ruby as host programming lan-
guage. We now briefly discuss how the model elements are
mapped to language constructs provided by the DSL (see also Sec-
tion 3.1 and Fig. 3). Table 1 lists the basic DSL statements (left col-
umn) and the corresponding effect (right column). In the table,
keywords of the DSL syntax are printed in bold typewriter font,
and placeholders for custom (scenario-specific) expressions are
printed in italics.

The RBAC DSL statements RESOURCE, OPERATION, SUBJECT and
ROLE are used to create resources, operations, subjects and roles
with the respective name and optional description attributes.
Table 1
Semantics of RBAC DSL statements.

RBAC DSL statement Effect

RESOURCE name [description] Define new resource
OPERATION name [description] Define new operation
SUBJECT name [description] Define new subject
ROLE name [description] Define new role
ASSIGN subject role Assign role to subject
INHERIT juniorRole seniorRole Let senior role inherit a junior role
PERMIT role operation resource Allow a role to execute a certain operation

on a specific resource

TASK name operation resource Define operation-to-task mapping
DME task1 task2 Define dynamic mutual exclusion (DME)
SME task1 task2 Define static mutual exclusion (SME)
RBIND task1 task2 Define role-binding (RBind)
SBIND task1 task2 Define subject-binding (SBind)
ASSIGN creates an association between a subject and a role. IN-
HERIT takes two parameters, a junior-role and a senior-role name,
and causes the senior-role to inherit all permissions of the junior-
role. PERMIT expresses the permission for a role to execute a cer-
tain operation on a resource. DME and SME allow the specification of
dynamically or statically mutual exclusive operations. Using
RBIND and SBIND, two operations are subjected to role-binding
or subject-binding constraints. Finally, the TASK statement is used
to establish a mapping from our RBAC DSL to implementation level
artifacts. More precisely, operations are mapped to concrete
WS-BPEL tasks (see Section 5.2). The complete access control
configuration for the patient examination scenario, expressed via
RBAC DSL statements, is printed in Appendix A.
4. Model transformations of process definitions for runtime
constraint enforcement

To enforce the RBAC constraints at runtime, the business pro-
cess needs to follow a special procedure. If the process executes
a secured task, it needs to provide a valid authentication token
for the active user. For instance, this token contains information
which subject (e.g., ‘‘Jane’’) executes an operation, and under which
role (e.g. ‘‘Staff’’) this individual operates. In this section, we dis-
cuss our approach for automatically obtaining these authentication
tokens to enforce security at runtime.

Fig. 4 illustrates which artifacts are utilized by the instances of
the business process. We follow the concepts of the SAML frame-
work [34] and provide the authentication data with the aid of an
Identity Provider (IdP) service. An IdP is a service provider that
maintains identity information for users and provides user
authentication to other services. The IdP is a reusable standard
component; its sole responsibility is to authenticate the user
and to issue an AuthData document which asserts the user’s iden-
tity (subject and role). As such, the IdP has no knowledge about
the process structure and RBAC constraints. Hence, we utilize the
decoupled RBAC Manager Service which keeps track of the state
of the process instances. The RBAC Manager Service knows the
process structure and decides, based on the RBAC constraints,
which subject or role is responsible for the next task (see also
[19]).

Combining the functionality of getResponsibility and
getAuthenticationData (see Fig. 4) constitutes the core pro-
tocol for obtaining authentication tokens that enable the enforce-
ment of task-based entailment constraints in a BusinessActivity.
This recurring protocol is executed for each secured task; hence,
it need not be implemented manually, but should ideally be gen-
erated automatically on top of the business process model that is
defined by the developer. We therefore aim at providing auto-
matic transformations to convert the domain-specific extensions
for mutual exclusion and binding constraints in BusinessActivity
models into regular activity models which perform the required
IAM tasks. This transformation is required as an intermediate
step towards the generation of corresponding definitions that
are directly deployable and executable (e.g., by WS-BPEL en-
gines). In the following, we describe the transformation proce-
dure in detail and discuss different implementation and
runtime aspects.
4.1. Model transformations to enforce mutual exclusion constraints

Here we discuss the detailed procedure for runtime enforce-
ment of mutual exclusion constraints in the form of DME and
SME tasks. We propose an approach for transforming design-time
BusinessActivity models into deployable standard activity models
that comply with this procedure. The transformations for enforcing



Fig. 4. Relationship between business process instance and security enforcement
artifacts.

Fig. 5. Process transformations to enforce mutual exclusion constraints.
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mutual exclusion constraints are illustrated in Fig. 5. Tasks repre-
senting invocations to external Web services are printed in gray,
while structured activities and tasks with local processing logic
are depicted with a white background.

The transformed activity models with mutual exclusion con-
straints in Fig. 5 contain four additional tasks. All four tasks are
UML CallBehaviorActions [32] (indicated by the rake-style symbol)
which consist of multiple sub-tasks. The internal processing logic
depends on the concrete target platform; later in Section 5.1 we
discuss the detailed logic for WS-BPEL.

The task Get Authentication Data invokes the IdP service to
obtain the authentication data token (AuthData) to be used for
later invocation of the BusinessAction. The second inserted task
is Check Mutual Exclusion, which is responsible for checking
whether the provided authentication data are valid with respect
to the mutual exclusion constraint. A UML value pin [32] holding
the name of the corresponding task provides the input for the
pin DME (Fig. 5a) or the pin SME (Fig. 5b), respectively. Addition-
ally, the Check Mutual Exclusion task receives as input the name
of the task to-be-executed (taskName, which is known from the
original process definition), and the AuthData (received from the
IdP service). The decision node is used to determine whether
Check Mutual Exclusion has returned a successful result. If the
result is unsuccessful (i.e., a constraint violation has been
detected) the control flow points back to Get Authentication Data
to ask the IdP again for a valid authentication data token. Other-
wise, if the result is successful, the task Add Authentication to
Request appends the user credentials in AuthData to the request
message for the target Web service operation. The fourth in-
serted task is Log Invocation, which adds a new log record that
holds the name of the task (taskName) and the AuthData of the
authenticated user. The input pin global determines whether
the log entry is stored in a local variable of the process instance
(value null) or in a global variable accessible from all process
instances (value ‘true’).

4.2. Model transformations to enforce binding constraints

The approach for transforming binding constraints in Business-
Actions (illustrated in Fig. 6) is similar to the transformation for
mutual exclusion constraints presented in Section 4.1. The trans-
formed process model first requests authentication data from the
IdP service. The task Check Binding Constraints then checks the
resulting AuthData with respect to role-bindings (RBind, Fig. 6a)
and subject-bindings (SBind, Fig. 6b). The process asks for new user
credentials and repeats the procedure if the binding constraint is
not fulfilled.

Note that the entailment constraints are checked directly inside
the process, not by the IdP service. Even though the AuthData (sub-
ject, role) obtained from the IdP is trusted and assumed to properly
represent the user executing the process, the AuthData may be in-
valid with respect to entailment constraints. Hence, the branch
‘‘check unsuccesful’’ indicates that the process instance asks for a
different user to login and execute the task. As the log of previous
tasks is stored locally by each process instance (except for SME
constraints, where log entries are also stored globally), the Check
Binding and Check Mutual Exclusion tasks are required directly in-
side the process logic and are not outsourced to external services.
This approach is able to deal with deadlock situations (evaluated in
Section 7.2).

In certain deployments, the platform providers (e.g., hospital
management) may be interested in tracking failed authorizations.
For brevity, such mechanisms are not included in Figs. 5 and 6,
but extending the approach with notifications is straight-forward.
4.3. Transformation rules for combining multiple constraints

So far, the transformation rules for the four different types of
entailment constraints in BusinessActivities (role-binding, sub-
ject-binding, SME, DME) have been discussed in isolation. How-
ever, as the scenario in Section 2 illustrates, Business-Actions can
possibly be associated with multiple constraints (e.g., Get Critical



Fig. 6. Process transformations to enforce binding constraints.
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History). Therefore, we need to analyze how the transformation
rules can be combined while still maintaining the constraints’
semantics. A simple approach would be to successively apply the
atomic transformations for each BusinessAction and each of the
constraints associated with it. However, this approach is not suited
and may lead to incorrect results. For instance, if we consider the
task Get Critical History with the associated DME and SBind con-
straints, the process might end up requesting the authentication
data twice, which is not desired. Therefore, multiple constraints
belonging to the same task are always considered as a single unit
(see also [19]).

Fig. 7 depicts the transformation template for a generic sample
BusinessAction X with multiple constraints c1, c2, . . . , cn.
Fig. 7. Generic transformation template for business action with multiple
constraints.
5. Application to SOA and WS-BPEL

This section discusses details of the process transformation
from Section 4 and illustrates how the approach is
applied to SOA, particularly WS-BPEL and the Web services
framework.
5.1. Supporting tasks for IAM enforcement in WS-BPEL

In the following we discuss the internal logic of the five sup-
porting IAM tasks used in the transformed activity models for
the enforcement of mutual exclusion (Section 4.1) and binding
constraints (Section 4.2).

Task Log Invocation: In general, process-related RBAC con-
straints rely on knowledge about historical task executions (see
also [14]). Therefore, a mechanism is required to store data about
previous service invocations. One conceivable approach is that
the process execution engine keeps track of the invocation history.
To that end, invocation data can be stored either in a local variable
of the process instance (for DME constraints) or in a global variable
that is accessible from all process instances (for SME constraints).
Unfortunately, WS-BPEL does not support global variables, but
we can overcome this issue by using an external logging Web ser-
vice. Fig. 8a shows the Log Invocation activity, which stores data
about service calls, including the name of the invocation and the
AuthData of the user under which the process executes. The invo-
cation is first stored in a local array variable of WS-BPEL. If the in-
put pin named global is not null, the data is also stored with the
external logging service (Log Invocation Globally). Currently, our
framework relies on a central logging service. As part of our future
work, we tackle advanced challenges such as privacy, and timing
issues that come with decentralized logging.

Task Get Authentication Data: This supporting IAM task is used
to obtain authentication tokens, see Fig. 8b. The identifier of the af-
fected process task is provided as a parameter taskName. For in-
stance, in the case of WS-BPEL, the name attribute of the
corresponding invoke statement can be used to determine this
value. As outlined in Section 4, the procedure is split up between
the RBAC Manager service and the IdP. First, the invocation Get
Responsibility asks the RBAC Manager for the role or subject
responsible for executing the next task. All combinations of values
are possible, i.e., either subject or role, or both, or none of the two
may be specified. The subject/role responsibility information is
used to execute an IdP Authentication Request. The authentication
method performed by the IdP is transparent; for instance, it may
perform smartcard based authentication or ask for username and
password. The AuthData output pin provided by this invocation
contains the definite subject and role name of the user.



Table 2
Mapping of RBAC DSL statements to WS-BPEL DSL statements.

DSL statement WS-BPEL DSL statement

DME task1 task2 <invoke name = ‘‘task1’’ rbac:dme = ‘‘task2’’ ../ >
SME task1 task2 <invoke name = ‘‘task1’’ rbac:sme = ‘‘task2’’ ../ >
SBIND task1 task2 <invoke name = ‘‘task1’’ rbac:sbind = ‘‘task2’’ ../ >
RBIND task1 task2 <invoke name = ‘‘task1’’ rbac:rbind = ‘‘task2’’ ../ >
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Task Add Authentication to Request: The activity in Fig. 8c
illustrates how authentication data are appended to the invocation
of Business Actions. First, the AuthData information is used to re-
quest a SAML assertion from the IdP service. This token contains
the subject and role with a trusted signature that ensures the
integrity of the assertion content. The assertion is then added to
the request message for the target service operation (the name is
specified via the input pin taskName) using the SOAP header mech-
anism [35] (SOAP is the communication protocol used by Web ser-
vices). Note that this activity leaves room for optimization. If many
tasks in the process are executed by the same subject and role, it is
advantageous to cache and reuse the SAML tokens in a local vari-
able of the process instance. However, caching security tokens car-
ries the risk of inconsistencies if the RBAC policies change.

Task Check Binding Constraints: Fig. 8d contains the activity
Check Binding Constraints, whose internal logic is to check the
logged invocations with role-binding and subject-binding against
the AuthData information. If the SBind parameter is set, the activity
looks up the last corresponding log entry (the taskName of the log
entry needs to be equal to SBind) in the local invocation map of the
WS-BPEL process instance. If the returned array (named logs) is not
empty, then the subject stored in the last log entry needs to be
identical to the subject in AuthData. Analogously, if the RBind
parameter is set, then the role of the last log entry with taskName
equal to RBind must be equal to the role in AuthData. If and only if
all conditions hold true, the activity returns a success status.

Task Check Mutual Exclusion: Similarly, the Check Mutual
Exclusion activity in Fig. 8e uses the log data to check the AuthData
against the previously performed invocations. If the input parame-
ter DME is set, WS-BPEL looks up the log entries from the local
invocation map. Otherwise, if an SME parameter is provided, the
corresponding logs are received from the external logging service
(global invocation map). The activity returns a successful result if
either the logs sequence is empty or all log entries have a different
Fig. 8. Supporting tasks for IAM
subject and role than the given AuthData. Due to the possibly large
number of entries in the logs sequence, it is crucial where these
conditions are evaluated (by the process or the logging service di-
rectly). To avoid transmitting log data over the network, we recom-
mend the implementation variant in which the logging service
itself validates the conditions. To that end, AuthData is sent along
with the request to the logging service and the service returns a
boolean result indicating whether the constraints are satisfied.
5.2. RBAC DSL integration with WS-BPEL

The TASK statement of the RBAC DSL realizes a mapping from
operations to concrete WS-BPEL tasks (invoke activities). This cor-
responds to the model in Fig. 3, where TaskType in the Business
Activities metamodel is mapped to Operation in the RBAC meta-
model. Using this mapping, we are able to automatically apply all
Business Activity entailment constraints to the corresponding WS-
BPEL invoke activities.

In our approach, WS-BPEL invoke activities are constrained
using specialized DSL statements. The DSL uses the extension
mechanism of WS-BPEL and introduces new XML attributes
rbac:dme, rbac:sme, rbac:sbind and rbac:rbind (the prefix
rbac refers to the XML namespace these attributes are part of).
These attributes are then directly annotated to the invoke activi-
ties in WS-BPEL. Table 2 illustrates how the relevant RBAC DSL
enforcement in WS-BPEL.
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statements are mapped to the corresponding WS-BPEL DSL state-
ments. For instance, the DME statement is mapped to a rbac:dme

attribute. The parameters of the DSL statements in Table 2 refer
to the task types defined using the TASK statement (see Sec-
tion 3.3). Note that these rbac:⁄ attributes can be multi-valued.
That is, multiple values can be separated by commas. For example,
a task that is dynamically mutual exclusive to task1 and task2 can
be rbac:dme = "task1,task2" attribute.

5.3. Automatic transformation of WS-BPEL definition

At deployment time, the business process model is automati-
cally transformed to ensure correct enforcement of identity and ac-
cess control policies at runtime. The transformation can happen on
different abstraction levels, either based on the platform-indepen-
dent model (PIM) or on the platform-specific model (PSM) (see,
e.g., [36]). On the PIM level, model transformation languages such
as Query/View/Transformation (QVT) [37] can be used to perform
UML-to-UML transformation of process activity models. Our ap-
proach proposes a transformation directly on the PSM model, i.e.,
the WS-BPEL process definition file.

Algorithm 1 (WS-BPEL Transformation Algorithm).
1 http://www.infosys.tuwien.ac.at/prototype/SeCoS/.
2 https://glassfish.dev.java.net/.
Input: WS-BPEL document bpel, Fragment Templates tmpl
Output: transformed WS-BPEL document
1: add < import ../>, < partnerLink ../>, and

< variable ../> statements to bpel
2: add < assign ../> statements to initialize

ProcessInstanceID and InvocationLogs variables
3: for all bpel//invoke as inv do
4: if inv/@rbac:* then
5: authInvoke  create < invoke ../> for operation

getAuthenticationData and partnerLink IdP
6: constraintChecks ;
7: for all inv/@rbac:* as constraint do
8: tasks split value of constraint by commas
9: for all tasks as task do
10: check  create < if>..</if > which checks

outcome of authInvoke for RBAC entailment constraint
constraint and task task

11: constraintChecks constraintChecks [ check
12: end for
13: end for
14: enforcementBlock  wrap sequence

authInvokekconstraintChecks in new < while>..</while >
block

15: insert enforcementBlock before inv
16: if inv /@rbac:sme then
17: logInvoke create < invoke ../> for operation

logInvocation via partnerLink LoggingService
18: insert logInvoke after inv
19: end if
20: end if
21: end for

Algorithm 1 gives a simplified overview of which WS-BPEL code
fragments are injected, and where. Variable names are printed in
italics, and XML markup and XPath expressions are in typewriter

font. The input is a WS-BPEL document bpel with security annota-
tions. Firstly, various required documents (e.g. the XSD files of SAML
and WS-Security) need to be imported into the WS-BPEL process
using import statements. Then the partnerLink declarations for
the needed services (such as the IdP service) are added to bpel, and
variable declarations are created (e.g. input/output variables for
getAuthenticationData operations). Using assign statements,
some variables (such as ProcessInstanceID) are initialized. Next,
the algorithm loops over all invoke elements that have an attribute
from the rbac namespace assigned (e.g. rbac:rbind or rbac:dme).
For every matching invoke several WS-BPEL code injections and
transformations have to be conducted. Firstly, an invoke statement
(authInvoke) is created. At runtime, this statement calls the IdP’s
getAuthenticationData operation. Next, an empty set
(constraintChecks) is created. Afterwards, the algorithm iterates
over all constraints (e.g.rbac:sbind) that have been defined for this
particular invoke statement. The values of every constraint

are split by commas. For instance, in the case of an rbac:dme =

"task1,task2" annotation, constraint is rbac:dme and tasks

is a set with two elements (task1 and task2). For every task an
if-block (check) is created. At runtime, this if-block checks, if
there is a violation of the entailment constraint constraint

regarding another task task. Every check added to the set
constraintChecks. Next, a new < while>..</while>-block
(enforcementBlock) is created. This block envelopes the previ-
ously created authInvoke statement and all checks contained in
constraintChecks. Finally, this enforcementBlock is inserted
directly before the secured invoke statement. Just in case the latter
is also annotated using a rbac:sme attribute, an additional invoca-
tion is injected right after the actual invoke element. This one calls
the logInvocation operation via the LoggingService

PartnerLink.
6. Implementation

In this section, we discuss our prototype implementation of the
proposed approach. The implementation is integrated in the SeCoS1

(Secure Collaboration in Service-based systems) framework. This sec-
tion is divided into four parts: firstly, we outline the architecture of
the system and the relationship between the individual services
and components in Section 6.1; secondly, the SAML-based SSO mech-
anism is described in Section 6.2; in Section 6.3 we present the algo-
rithm for automatic transformation of WS-BPEL definitions
containing security annotations from our DSL; finally, Section 6.4 dis-
cusses the implementation for checking constraints over the log data.

6.1. System architecture

Fig. 9 sketches the high-level architecture and relationships be-
tween the example process and the system components.

The patient examination scenario from Section 2 is imple-
mented using WS-BPEL and deployed in a Glassfish2 server. The
scenario involves three hospitals, which host the protected services
for patient management and examination. All service invocations
are routed through a Policy Enforcement Point (PEP), which acts
as a central security gateway, intercepts every incoming service re-
quest and either allows or disallows its invocation. It is important
that the PEP operates transparently and as close to the protected
resources (i.e., services) as possible. Using the Java API for XML
Web services (JAX-WS), the PEP has been implemented as a SOAP
message handler (interface SOAPHandler). This handler can be
plugged into the Web service’s runtime engine in a straightforward
manner. Once activated, the interceptor is able to inspect and mod-
ify inbound and outbound SOAP messages and to deny service
invocations.

Each hospital runs a SAML IdP service, which is used to issue
the SAML assertions that are required in the WS-BPEL process.

http://www.infosys.tuwien.ac.at/prototype/SeCoS/
http://https://glassfish.dev.java.net/


Fig. 9. Example process in system architecture.
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The IdP’s responsibility is twofold: firstly, it authenticates users;
secondly, the IdP assures the identity of a subject and its associated
attributes (e.g., roles) by issuing a SAML assertion SOAP header
which is used in subsequent service invocations. For the sake of
an easy integration into the given system environment, we decided
to use the JAX-WS API for implementing the Login Web service.
This SOAP Web service offers a login method. It requires a user-
name/password pair and returns a SAML assertion. Internally, we
utilize the Java Architecture for XML Binding (JAXB) for parsing
and creating SAML assertions. Additionally, the Apache XML Secu-
rity for Java3 library is used for digitally signing XML documents (i.e.,
the SAML assertions).

The actual decision whether an invocation should be prevented
or not is typically delegated to another entity, the Policy Decision
Point (PDP). When deciding over the access to a service resource
the PDP has to make sure that the subject attempting to access
the resource has the permission to do so. This decision is based
on the policy information stored in the RBAC repository (which is
based on the DSL statements authored by domain experts). In
our implementation, the core functionality of the PDP is embedded
into the RBAC DSL (see Section 3.2). That is, the DSL offers an ac-

cess method that can be used to determine whether the request-
ing subject is permitted to access the target resource (service)
under the specified context and role (see Fig. 9). In order to make
this functionality accessible to the outside of the DSL’s interpreter,
we developed a RESTful Web service, that bridges HTTP requests to
the interpreter. More precisely, the PDP service uses the Bean
Scripting Framework (BSF)4 to access the interpreter. The Java API
for RESTful Web Services (JAX-RS) is used to realize the PDP service’s
RESTful Web interface.
6.2. SAML-based single sign-on

Fig. 10 depicts an example of the Identity and Access Control
enforcement procedure modeled in UML. To illustrate the SSO as-
pect of the scenario, we assume that a patient with subject name
‘‘Alice’’ (cf. Fig. 3), who is registered in hospital 2 (H2), is examined
in hospital 1 (H1) and requests her patient history from previous
3 http://santuario.apache.org/.
4 http://commons.apache.org/bsf/.
examinations in hospital 3 (H3). The procedure is initiated by the
WS-BPEL process which requests the execution of a protected
Web service.

Prior to issuing the actual service request, the user has to
authenticate using the SAML IdP. The IdP queries the user database
to validate the credentials provided by the client. As the credentials
of user Alice are not stored in the DB of H1, the IdP contacts the IdP
of H2, which validates the credentials.

If the user credentials could not be validated, the process is ter-
minated prematurely and a SOAP fault message is returned. In our
example scenario, the business process receives the fault message
and activates corresponding WS-BPEL fault handlers. Otherwise, if
the credentials are valid, the IdP creates a signed assertion similar
to the one shown in Listing 1 and passes it back to the WS-BPEL
process (see Fig. 10). The business process attaches the assertion
to the actual service request.

The example SAML assertion in Listing 1 illustrates the informa-
tion that is encapsulated in the header token when the scenario
process invokes the getPatientHistory operation of the patient
Web service of H3. The assertion states that the subject named
Alice, which has been successfully authenticated by the IdP of
the hospital denoted by the Issuer element (H2), is allowed to
use the role staff in the context default. The included XML sig-
nature element ensures the integrity of the assertion, i.e., that the
assertion content indeed originates from the issuing IdP (H2) and
has not been modified in any way. When the PEP of H3 intercepts
the service invocation with the SAML SOAP header, its first task is
to verify the integrity of the assertion. The signature verification
requires the public key of the IdP that signed the assertion; this
key is directly requested from the corresponding IdP (under
http://h2.com/IdP) using SAML Metadata [38]. Our implementa-
tion uses the Apache XML Security for Java library to conduct the
signature verification.

After the PEP of H3 has verified the message integrity, it needs to
determine whether the subject is authorized to access the requested
service operation. This is achieved by the PDP service of H3 that al-
lows the PEP to post a SAML Authorization Decision Query. The
PDP answers this query by returning an assertion containing a SAML
Authorization Decision Statement. Listing 2 shows an example
SAML assertion which informs the PEP that our staff member is al-
lowed to invoke the action (operation)getPersonalData of the re-
source (Web service) http://h1.com/patient. Analogously to the IdP
service, we also used the JAX-WS API to implement the SOAP-based
interface of the PDP service. The PDP offers the method query,
which takes an Authorization Decision Query message as argument
and returns an Authorization Decision Statement. Again, we lever-
age JAXB for parsing the SAML documents.

6.3. Automatic transformation of WS-BPEL definition

Since both WS-BPEL and SAML are XML based standards, we are
able to reuse and utilize the broad line-up of existing XML tooling.
The transformation procedure of WS-BPEL process definitions is
hence based on XSLT (Extensible Stylesheet Language Transforma-
tions) [39], a language for arbitrary transformation and enrichment
of XML documents.

In general, the original WS-BPEL process is transformed by
enriching the process definition file with code fragments that per-
form the IAM tasks (cf. Section 5.1). In principle, these fragments
are generic and static, i.e., for arbitrary WS-BPEL processes nearly
the same fragments can be injected. However, some fragments
contain volatile elements that are specific to every single WS-BPEL
process. As these fragments need to be adapted to fit a specific WS-
BPEL process, we propose a two-stage transformation process.
Fig. 11 depicts an overview of the document artifacts involved in
the transformation process, as well as the flow relations between

http://h2.com/IdP
http://h1.com/patient
http://santuario.apache.org/
http://commons.apache.org/bsf/


Fig. 10. Identity and access control enforcement procedure.

Listing 1. Exemplary SAML assertion carrying subject and role information.

Listing 2. Exemplary SAML authorization decision.

5 CTT = {t 2 TTjsb(t) – ; _ rb(t) – ; _ sme(t) – ; _ dme(t) – ;}
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them. The leftmost part of the figure indicates how the original
WS-BPEL process definition file and various XML fragment files
serve as input for the Template Generator XSLT file. This Template
Generator constitutes the first transformation step and turns the
generic fragment templates into fragments tailored to the target
process definition. The last transformation step injects the gener-
ated fragments into the original WS-BPEL process file.

6.4. Checking business activity constraints

The process transformation approach presented in Section 4 en-
sures runtime enforcement of Business Activity entailment con-
straints. For highly business- or security-critical systems we
propose log analysis to additionally monitor that the process in-
stances behave as expected (see, e.g., [40]). To check whether all
constraints are fulfilled in the log data, we require an engine capa-
ble of querying the state of historical invocation data. As our
framework is operating in a Web Services environment, XML is
the prevalent data format and we focus mainly on XML tooling.
We hence utilize XQuery [41] to continuously perform queries over
the invocation logs stored in XML. To facilitate the handling of
these queries, we use WS-Aggregation [42], a platform for event-
based distributed aggregation of XML data.

Listing 4 prints exemplary log data that are emitted by the
transformed business process and handled by WS-Aggregation.
Each log element in the listing represents one invocation event.

Listing 3 prints the constraint enforcement queries, expressed
as XQuery assertion statements that are expected to always yield
a boolean true value. Lines 1–7 contain an excerpt of the constraint
definitions in our scenario. For instance, the two tasks named
Get_Personal_Data and Assign_Physician are in a role-binding rela-
tionship and hence combined in an element rbind. Moreover,
the code binds the log elements from Listing 4 to the variable
$logs (line 8). Finally, Listing 3 contains the four XQuery expres-
sions used for enforcing constraints concerning SME tasks (lines
11–15), DME tasks (lines 17–19), subject-bindings (lines 22–25)
and role-bindings (lines 27–30).

The four expressions use universal quantification (every. . .

in. . . satisfies) to express assertions about pairs of tasks de-
fined in the constraints list. The variables $t1 and $t2 refer to the
names of the respective tasks. The query for SME loops over all
pairs of SME tasks and ensures that the logs do not contain invoca-
tions for both tasks that use the same subject or the same role. The
DME query tasks is similar, with the difference that only the sub-
ject is queried and additionally the instanceID attribute of the log
entries is considered. Subject-binding is checked by ensuring that
for all log entries of a particular process instance two tasks $t1
and $t2 are executed by the same subject. The role-binding query
works analogously, but instead of using the subject attribute, here
we require the role attribute to match for all rbind-connected tasks
that occur in the same process instance.
7. Evaluation and discussion

In this section, we evaluate various aspects to highlight the ben-
efits, strengths, and weaknesses of the presented solution. Five
business processes with entailment constraints were selected to
conduct the evaluation, including our example process from Sec-
tion 2 and four additional processes from existing literature. The
examples represent typical processes from different domains and
cover all constraint types supported by our approach. The key
properties of the evaluated processes are summarized in Table 3:
ID identifies the process (P1 is our sample process), jTTj is the total
number of task types per process, jCTTj is the number of task types
associated with entailment constraints5, jRj is the number of roles
defined in the scenario, jSj is the number of subjects used for the test,
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and jHRj is the number of senior-junior relationships in the role
hierarchy6.

Although not all results of our evaluation are fully generaliz-
able, they are arguably valid for a wide range of scenarios and
SOA environments in general. An evident observation is that run-
time enforcement of security constraints is computationally inten-
sive, and therefore performance effects need to be taken into
account. We also show that the proposed DSL greatly simplifies
development of security-enabled WS-BPEL processes, which
becomes apparent when comparing the number of code artifacts
before and after automatic transformation. However, the approach
also has certain limitations which we also want to document
explicitly. Overall, our evaluation is organized in four parts: first,
we evaluate the runtime performance in Section 7.1; second, in
Section 7.2 we verify the behavior of secured processes when pro-
vided with valid and invalid authentication data7; third, Section 7.3
evaluates the WS-BPEL transformation procedure; fourth, in Sec-
tion 7.4 we discuss current limitations in the framework and general
threats to validity. The experiments in Sections 7.1, 7.2 and 7.3 were
executed on a machine with Quad Core 2.8 GHz CPU, 8 GB RAM, run-
ning Ubuntu Linux 9.10 (kernel 2.6.31–23).
7.1. Performance and scalability

For our scalability evaluation we have defined, deployed, and
executed different process instantiations (based on the example
in Section 2) in a Glassfish server (version 2.1.1) with WS-BPEL en-
gine (version 2.6.0). Here, we are only interested in the net pro-
cessing time of the Web service invocations, the duration of
human tasks is not considered. Therefore, the execution of busi-
ness operations (e.g., Obtain X-ray Image or Decide On Treatment)
has zero processing time in our testbed.

The WS-BPEL process has been deployed in different sizes (mul-
tiple scopes, one invoke task per scope), once with enforced
security (i.e., annotated with security attributes, automatically
transformed at deployment time), and once in an unsecured ver-
sion. The deployed processes were executed 100 times and we
have computed the average value to reduce the influence of exter-
nal effects. Fig. 12 plots the execution time (minimum, maximum,
average) for both the secured (top line) and the unsecured version
(bottom line). The top/bottom of each box represents the
maximum/minimum, respectively, and a trendline is drawn for
the average value8. We observe that a single BusinessAction invoca-
6 HR = {(s, j) 2 R � Rjj 2 rh(s)}
7 Note that all processes from Table 3 where implemented and evaluated with the

same rigor. However, we do believe that certain parts of our evaluation are bes
explained in detail based on a single process. Therefore, Sections 7.1 and 7.2
exemplarily discuss the results from the patient examination example. This discus-
sion applies analogously to the other processes from Table 3. The aggregated results
for all processes are discussed in Section 7.2.3.

8 The standard deviation was in the range of 39.21 to 413.69 ms (lowest and
highest values are for processes with 1 scope and 18 scopes, respectively) for the
secured version, and in the range of 10.38 to 58.78 ms (for 13 scopes and eight scopes
respectively) for the unsecured version.
t

,

tion in the unsecured version is very fast, whereas the secured ver-
sion incurs a considerable overhead. The overhead is hardly surpris-
ing considering that for each business logic service the process needs
to invoke the IdP and RBAC services, as well as apply and check XML
signatures. However, the measured results indicate that the current
implementation has potential room for additional optimization.

In addition to the end-to-end performance of the secured WS-
BPEL process, we also evaluated the performance of enforcing the
BusinessActivity constraints using the XQuery based querying ap-
proach. To that end, we stored 10,000 entries with SME, DME, SBind
and RBind constraints to the invocation log and measured the time
required to execute the four constraint queries in Listing 3. The re-
sults are illustrated in Fig. 13, which plots the time for every 100th
invocation over time. As the testbed started cleanly from scratch,
the first logged invocation(s) took longer (�250 ms) because of
internal initialization tasks in the log store and the WS-Aggregation
query engine. Starting from the second data point (invocation 100),
we see the query time increasing by around 6 ms per 100 queries.
To provide an insight about resource consumption, the CPU utiliza-
tion and Java heap space usage are plotted in Fig. 14. The slight fluc-
tuations in heap space are due to Java’s garbage collection
procedure. The four constraint queries are executed in parallel,
but since they access a shared data structure with log data, internal
thread synchronization is applied. Hence, CPU utilization reaches
only a peak value of �70% (i.e., three of the four cores).

The increase of time is inherent to the problem of querying
growing log data. We argue that query performance is feasible
for medium-sized to even large scenarios. Firstly, as evidenced in
Fig. 13, the execution time appears to grow only linearly (we have
also performed a linear regression which showed almost perfect fit
for y = 20 + 0.06x). The reason is that the queries are formulated in
a way that always only the last added log entry needs to be com-
pared to the other entries (hence, the queries are executed for each
new log entry). Secondly, even for large logs (tens of thousands of
entries) the execution time is still in a range of only a few seconds.
If we extrapolate the test values for very huge logs (millions of en-
tries), however, the current approach would take in the order of
minutes, which may not be feasible for real-time processes. Hence,
additional optimizations will be required for such very-large scale
situations – a problem we actively tackle in our future work.
7.2. Reaction of the secured process to valid and invalid authentication
data

In the second experiment, we utilize the five evaluation pro-
cesses (see Section 7) to evaluate how our approach deals with
authentication data of authorized and unauthorized users provided
by the IdP service. As outlined in Section 4, the task of the IdP is so-
lely to authenticate users, but the authorization in terms of RBAC
constraints is enforced by the process instance (and, additionally,
by the log data queries from Section 6.4). Hence, the reason for per-
forming this experiment is to test the ability of the transformed
business process to cope with unauthorized users who attempt



Listing 3. XQuery assertion expressions for enforcing business activity constraints.

Listing 4. Format of invocation data logged as events.

Table 3
Characteristics of business processes used in the evaluation.

ID Name jTTj jCTTj jRj jSj jHRj

P1 Patient examination 7 6 3 4 1
P2 Purchase order [43] 6 4 2 3 1
P3 Paper review [14] 5 4 3 5 0
P4 Tax refund [16] 5 4 2 5 0
P5 Credit application [14] 5 3 2 4 1
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to execute restricted process tasks. Moreover, we are interested in
evaluating under which circumstances the RBAC rules may become
overconstrained such that the process ends in a deadlock and is un-
able to continue. Our methodology in this experiment is to execute
all possible instances of the test processes with respect to user
authorization (given a set of subjects and process tasks, try each
combination of subjects performing a task; see Section 7.2.1 for de-
tails). The chosen scenario processes have a feasible size to perform
this full enumeration. We discuss detailed results based on the pa-
tient examination process (P1) in Section 7.2.2, and aggregated re-
sults over all five processes (P1-P5) in Section 7.2.3.
Fig. 12. Process execution times – secured vs unsecured.
7.2.1. Permutation of RBAC assignments
We define the domain [TT ? (S � R)] of RBAC assignment func-

tions, where TT is the set of BusinessAction task types, S is the set of
subjects and R is the set of roles (cf. Section 3.1). The function de-
fines which authentication data should be used for each task type.
We then consider all possible permutations of function assign-
ments in this domain, with the restriction that for each pair
(s,r) 2 S � R the subject s is directly associated with role r. To keep
the domain small, inherited roles are not considered. For instance,
in our scenario the pair (Bob,Physician) is included, but (Bob,Staff) is
not considered, although Bob inherits the role Staff through Physi-
cian. Furthermore, note that SME constraints are checked at de-
sign-time when defining a process-related RBAC model. The
static correctness rules ensure the consistency of the correspond-
ing RBAC models at any time (see [14]). This means that it is not
possible to define an inconsistent RBAC model where, for example,
a subject or role possesses the right to execute two SME tasks. The
respective RBAC model is then applied to make access decisions
and to perform task allocations for all process instances. In other
words, because for each process instance the allocation of the
respective task instances is based on a consistent process-related
RBAC model, it is not necessary to check the fulfillment of SME
constraints again at runtime (see also [19]).

For each permutation one process instance has been executed,
and the IdP service in the test environment is configured to return
the authentication data that correspond to the respective permuta-
tion. The IdP keeps track of getAuthenticationData requests and reg-
isters how many duplicate requests are issued for any task type in
each process instance. Recall that a duplicate request is always is-
sued if the IdP provides authentication data of a non-authorized
user. Thus, each duplicate getAuthenticationData request represents
a blocked execution of a restricted task (which is the desired/ex-
pected behavior).

The purpose of this experiment setup is to empirically evaluate
(1) whether the secured process correctly allows/denies access for
valid/invalid provided credentials, respectively, and (2) how the
platform deals with unresolvable conflicts (if the process deadlocks
due to mutual exclusions). For instance, when Get Personal Data in
our scenario has been invoked with (Bob,Physician) and the IdP
provides (John,Staff) for Assign Physician, then it is required to get
new authentication data because of a violated role-binding con-



Fig. 13. Execution time of constraint queries for increasing log data.

Fig. 14. Resource consumption for constraint queries.
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straint. In this case, the IdP simply provides the next available
authentication data, simulating the real-life situation that a new
subject logs in after an unauthorized subject has been denied ac-
cess. This procedure is repeated as long as new pairs of subject
and role can be provided; if the process has unsuccessfully at-
tempted to invoke a task with all possible combinations, the whole
process terminates with a fault message. Note that this method of
deadlock detection is suitable for our scenario which defines only a
small number of subjects; for more advanced detection of dead-
locks and unsatisfiable constraints we refer to related work [44,45].
7.2.2. Detailed discussion for the patient examination process
In our scenario, the domain (S � R) consists of the four pairs

((John,Staff), (Jane,Physician), (Bob,Physician), (Alice,Patient)), and
six task types exist (jTTj = 6). Hence, the total number of possible
assignment function permutations is 46 = 4096. However, the pro-
cess structure allows to reduce this number because the decision
node (whether the patient is in an emergency situation) splits
the process into two possible execution paths (one path with five
tasks and the other path with four tasks). The decision node has
been simulated to uniformly use both of the two possible condi-
tional branches. Therefore, in total only 45 + 44 = 1280 process in-
stances have to be executed.

Fig. 15 illustrates the number of blocked authorization requests
for each process instance. Considering the procedure of security
enforcement (cf. Section 4), a blocked request means that the
authentication data provided by the IdP violate any constraints
(which is expected in many cases, since all permutations are
tested). Table 4 summarizes the aggregated values: 20 of the
1280 generated RBAC assignments were completely valid from
the start and no blocked requests were necessary. The remaining
instances required between 1 and 11 blocked requests until a final
state (successful or unsuccessful) is reached.

While there have been 1024 successful executions of the pro-
cess, 256 failed instances had to be aborted because of deadlock
situations. Deadlocks can result from the complex inter-dependen-
cies of BusinessActivity access rules (see, e.g., [18,46]). For in-
stance, consider the operation sequence in Table 5. The deadlock
is caused by the subject-binding between Get Critical History and
Decide On Treatment, combined with the fact that both tasks can
be executed by different roles (the former by Patient and Physician,
and the latter only by Patient). In fact, all process executions in
which the patient Alice executes Get Critical History lead to this
conflicting situation. Note that the focus of this paper is to enforce
RBAC constraints and to detect deadlocks9. In our future work we
also investigate techniques to check the satisfiability of a certain pro-
cess and avoid deadlocks in advance (see, e.g., [18,44,45,47]).
9 Note that the deadlocks in our evaluation result from the fact that we
automatically generate and execute all possible process instances (see Section 7.2)
Because our process-related RBAC models adhere to the static and dynamic
consistency requirements defined in [14,19] the resulting RBAC models are always
consistent. However, even though we always have consistent models, it is stil
possible that a certain process is not satisfiable (see, e.g., [44,45]).
.

l

The same experiment setup has been used to measure the exe-
cution time of the secured process instances over time (Fig. 16).
Again, we see a slight upwards trend in the processing time. The
reasons for this trend are twofold. First, the more instances have
executed, the more log data must be checked for constraint con-
flicts. Second, particularly for SME constraints an increasing num-
ber of log data increases the likelihood that the blocked requests
need to be issued because the provided test authentication data
are in a conflict with one or more previous invocations. The spikes
in Fig. 16 indicate different execution times of instances with few
versus many blocked requests (see also Fig. 15). Notice that the
execution time shows a certain pattern between roughly 0 and
1000, and a different pattern between 1000 and 1280. These pat-
terns are a direct result of the experiment design, because we first
execute 1024 instances that follow the ‘‘emergency’’ path in the
scenario process, and afterwards 256 instances that follow the
‘‘non-emergency’’ path.

7.2.3. Aggregated results for all test processes
Table 6 summarizes the test results for the five test processes.

The table contains the process ID that refers back to Table 3, the
total number of executed instances which were generated from
the RBAC assignment permutations, the number of deadlocks that
occurred, the blocked requests (minimum/maximum/average) per
process instance, and the aggregated execution time per instance.
In general, the number of instances corresponds to jSjjTT j, except
in cases where we can take advantage of the process structure to
reduce the number of instances (i.e., 1280 instead of 4096 in-
stances for P1). Process P4 has the highest number of instances
(3125). The aggregated values are computed over all process in-
stances; for example, the average number of blocked requests over
all 1280 instances of process P1 is 4.8. The difference between min-
imum and maximum execution time depends on the executed
tasks, and hence correlates strongly with the number of blocked re-
quests. The maximum execution time was roughly 14 s (for an in-
stance of process P4), and the shortest instance (of P1) executed
within less than 2 s. Depending on the process definition and the
chosen subjects, either all generated process instances were able
to execute successfully (P3, P4, P5), or some instances deadlocked
(P1, P2). Some process definitions are prone to deadlocking (e.g.,
20% of P1’s possible instances lead to a deadlock), whereas in other
processes deadlocks are not even possible. For instance, the tax re-
fund process [16] (P4) was run with the smallest possible number
of subjects (at least two clerks and three managers are required),
but out of the 3125 instances (each subject tries to access each
of the five task types, 55 = 3125) not a single instance deadlocks.
Even though satisfiability of access constraints at different points
of the process execution can be determined algorithmically (see,
e.g., [18]), we argue that it is equally important to test the running
system, and to empirically verify the number of successful and
blocked requests, as shown in this evaluation.



Fig. 15. Blocked task executions per test process instance (patient examination scenario).

Table 4
Process executions with permutations of TT ? (S � R) assignments.

Result outcome Instances

No blocked requests 20
1 Blocked request 56
2 Blocked requests 108
3 Blocked requests 163
4 Blocked requests 228
5 Blocked requests 232
6 Blocked requests 210
7 Blocked requests 140
8 Blocked requests 80
9 Blocked requests 32
10 Blocked requests 10
11 Blocked requests 1

Successful execution 1024
Failed (Deadlocked) 256

Total instances 1280
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7.3. WS-BPEL transformation algorithm

Concerning the evaluation of the WS-BPEL transformation algo-
rithm, we consider the same twenty test process definitions with
different sizes described earlier in Section 7.1.

Fig. 17 shows the number of WS-BPEL elements of the process
definition before and after the automatic transformation. The re-
sults indicate that the size of the WS-BPEL definition rises with
increasing number of scopes. While our test process with a single
scope contains 33/115 WS-BPEL elements before/after transforma-
tion, the process definition for 10 scopes grows to 60/484 WS-BPEL
elements before/after transformation, respectively. These numbers
are determined by counting all XML (sub-) elements in the WS-
BPEL file using the XPath expression count(//*). At the beginning
of the transformation, 41 elements are added (import, partner-
Table 5
Operation sequence leading to a constraint conflict (Deadlock).

Task Sub. Role Effect

Get Personal
Data

John Staff Role Staff must Assign Physician

John must Assign Physician
Assign

Physician
John Staff –

Obtain X-ray
Image

Bob Physician –

Get Critical
History

Alice Patient Alice must not Get Expert Opinion

Alice must Decide On Treatment
Get Expert

Opinion
Jane Physician –

Decide On
Treatment

? ? Deadlock, because the bound subject
Alice is not permitted
Link and variable declarations), and for each new scope 41 ele-
ments are added for the IAM task definitions (note that both values
are 41 coincidentally). We observe that the ability to define secu-
rity annotations in WS-BPEL keeps the process definition clear at
design time. In fact, the additional code for security enforcement
in WS-BPEL is often larger than the actual business logic. This
can be seen as an indicator that our approach can reduce the devel-
opment effort as compared to manual implementation, although
we did not empirically evaluate this aspect in detail.

7.4. Limitations

In this section, we discuss the current limitations and weak-
nesses of our approach and the corresponding Web service tech-
nology projection. We also propose possible mechanisms and
future work to mitigate the consequences and risks associated with
these limitations.

� Parallel Process Flows: WS-BPEL provides the flow command
for concurrent execution of tasks. Security enforcement of tasks
that execute in parallel poses a challenge for various reasons.
Firstly, if two tasks are started with mutually exclusive access
rights, a race condition is created with respect to the first task
to access the authentication token. Secondly, since we make
use of ‘‘global’’ (process-instance-wide) variables, the injected
IAM tasks for each single WS-BPEL invoke action are supposed
to execute atomically and should not access these variables
concurrently. To handle parallel execution, we hence propose
to extend the injected IAM tasks with two additional tasks to
acquire and release an exclusive lock when entering and leaving
the critical region, respectively. Since BPEL does not provide a
corresponding language construct, an external Web service is
used to acquire the exclusive lock on a semaphore. For brevity
and clarity, these additional synchronization tasks have not
been added to the transformation in Section 4. In future work,
we further plan to introduce more sophisticated synchroniza-
tion using the WS-BPEL link mechanism.
� Deadlocking: If the RBAC policies are conflicting, the procedure

for obtaining and checking user authentication data can end up
in a deadlock that is unable to terminate with a successful
result. To mitigate the effect of policy conflicts, it is therefore
required to perform timely satisfiability checks. In Section 8
we discuss related work that focuses on this topic, in particular
we refer to previous work in [18,19,46,47].
� Single Point of Failure: Our Web service technology projection

builds on the assumption that the IdP and Logging services
operate reliably and continuously. An outage of any of these
services would imply that the access control procedure cannot
be performed in its entirety or that certain log data cannot be
stored. Depending on the process definition at hand, the conse-



Fig. 16. Execution time of secured BPEL process instances over time.

Table 6
Aggregated test execution results of the five evaluated processes.

ID Instances Deadlocks Blocked requests Execution time (ms)

Min. Avg. Max. Min. Avg. Max.

P1 1280 256 0.0 4.8 11.0 1802.0 3199.6 5222.0
P2 729 243 0.0 3.3 7.0 3990.0 5009.0 8881.0
P3 625 0 0.0 3.6 8.0 3444.0 5464.8 8057.0
P4 3125 0 0.0 6.9 16.0 2984.0 8356.6 14363.0
P5 64 0 0.0 1.8 4.0 2799.0 3070.1 5530.0

Fig. 17. Different sizes of WS-BPEL processes before transformation (i.e., process
annotated with RBAC DSL statements) and after transformation (i.e., process with
injected security enforcement tasks).
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quences can be more or less severe. The IdP service is the key
component that provides the basis for user authentication. If
it is unavailable, the secured execution fails. A possible strategy
for certain application scenarios would be to define break-the-
glass (BTG) rules (see, e.g., [48–50]) which allow to temporarily
access the protected resources with fallback security settings, in
order to provide for continuous operation. An outage of the Log-
ging service is less severe, because it is strictly only required to
perform a posteriori conformance checks of global constraints
that may affect all (or at least multiple) process instances
(see, e.g., [51]). Instance-specific constraints are local to a cer-
tain process instance and can be enforced by means of
instance-specific log data stored in WS-BPEL variables (see
Section 5).
� Security Token Hijacking: Malicious users may attempt to gain

access to services they are not entitled to. Consider an attacker
who intentionally does not follow the processing logic of the
transformed process but invokes the target Web services
directly. The attacker may obtain a SAML token by executing
getAuthenticationData, which asserts its subject and role.
Assume that the token is used in combination with the instanc-
eID of an active process instance to invoke the Decide On Treat-
ment; this situation must be avoided under any circumstances.
To enforce the subject-binding with Get Critical History and
other RBAC rules it is imperative that all access constraints
are validated on the service side. In our architecture we hence
require a policy enforcement point (PEP) which intercepts and
analyzes all invocations.
� Invalid WS-BPEL Modification: For the approach to work reli-

ably, it is important that the WS-BPEL definition should not
be modified after the automated code transformation step.
We therefore propose the use of a trusted deployment compo-
nent which provides exclusive access to the business process
execution engine. As part of transformation process the WS-
BPEL file is signed with an XML signature [52], which is then
checked by the deployment component to enforce integrity.
� Human Factors: In the end, a business process involving human

labor can only be as safe and reliable as the persons who per-
form it. That is, control mechanisms such as mutual exclusion
(e.g. to enforce the four-eyes principle) can provide a strong
instrument for improving quality and reliability, but human
errors can never be fully ruled out.

8. Related work

This section provides a discussion of related work in the area of
model-driven IAM and their application to SOA business processes.
Our analysis focuses on three main research areas: security model-
ing for Web service based systems, DSL-based security modeling,
and techniques for incorporating runtime enforcement of security
constraints into business processes.

8.1. Security modeling for web service based systems

Jensen and Feja [53] discuss security modeling of Web service
based business processes, focusing on access control, confidenti-
ality and integrity. Their approach is based on Event-driven Pro-
cess Chains (EPCs) [54] and defines different security symbols
that the process definitions are annotated with. Their implemen-
tation is integrated into the ARIS SOA Architect software, which
is also able to transform the EPC model into an executable SOA
business process. The paper describes the generation of WS-Secu-
rityPolicy [55] policies, but does not discuss mutual exclusion
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and binding constraints in process-related RBAC models, nor does
it discuss in detail how the process engine enforces the policies
and constraints at runtime, which in contrast is a core part in
our work.

Kulkarni et al. [56] describe an application of context-aware
RBAC to pervasive computing systems. As the paper rightly states,
model-level support for revocation of roles and permissions is re-
quired to deal with changing context information. The approach
has a strong focus on dynamically changing context (e.g., condi-
tions measured by sensors) and the associated permission (de-
)activation. In our framework, context information is part of the
RBAC model definitions (more details can be found in [21]). In this
paper, the context information in the RBAC model has been ab-
stracted from, but as part of our future work we plan to integrate
the Business Activity model in [14] with context information (see
also [57]).

Although our model does not directly build on the notion of
trust, access control policies can also be established dynamically
by deriving trust relationships among system participants [58].
Skoksrud et al. present Trust-Serv [59], a solution for model-driven
trust negotiation in Web service environments. Similar to our ap-
proach, the policy enforcement is transparent to the involved
Web services. Another similarity is that trust credentials (such as
user identifier, address or credit card number) are exchanged
iteratively throughout the process, which is also the case for the
authentication credentials in our approach. However, trust-based
policies in [59] are monotonic in the sense that additional trust
credentials always add access rights and never remove existing
ones, which is in contrast to access control in this paper, where
the execution of tasks can activate entailment constraints which
progressively narrow down the set of valid access control
configurations.

Our approach was also influenced by Foster et al. [60] who pres-
ent an integrated workbench for model-based engineering of ser-
vice compositions. Their approach supports service and business
process developers by applying formal semantics to service behav-
ior and configuration descriptors, which can then be analyzed and
checked by a verification and validation component. The policies
enforced by the workbench are quite generally applicable and
hence require developers to perform application specific modeling,
whereas our proposed DSL and WS-BPEL annotations are tailored
to the domain of RBAC and entailment constraints and arguably
straight-forward to apply.

Seminal contributions in the context of modeling support for
Web service based business processes are provided within the
Web Services Modeling Framework (WSMF) by Fensel et al. [61],
and the modeling ontologies that emerged from this project. For
instance, security requirements can be modeled in WSMF by
declaring the subject and role as input data and defining pre-con-
ditions for all operations that require certain authentication data.
In the previous years, the Semantic Web community has been
pushing forward various ontologies to draw an ever more exact
picture of the functionality exposed by Web services, in order to al-
low for sophisticated discovery, execution, composition and inter-
operation [62]. In fact, although not very frequently used in
practice, semantically annotated Web services also allow for a
more fine-grained definition of access control policies, from the
interaction level down to the message level. Whereas annotations
in semantic Web services are used mostly for reasoning purposes,
the BPEL annotations used in our approach are utilized as metadata
for runtime access control enforcement. Such business process
model abstractions, which are the underpinning of semantic equiv-
alence and structural difference, have been empirically studied in
[63], and our approach can be seen as the reverse operation of
abstraction (i.e., concretization) for the specific application domain
of task-based entailment constraints.
Various other papers have been published that are related to
our work or have influenced it, some of which are mentioned in
the following. The platform-independent framework for Security
Services named SECTISSIMO has been proposed by Memon et al.
[64]. The conceptual novelty of this framework is the three-layered
architecture which introduces an additional layer of abstraction
between the models and the concrete implementation technolo-
gies. In contrast, our prototype only considers two layers (i.e. mod-
eling of RBAC constraints and transformation of WS-BPEL code).
However, the presented modeling concepts (see Section 3) as well
as the model transformations (see Section 4) are independent from
concrete implementation technologies too.

Lin et al. [65] propose a policy decomposition approach. The
main idea is to decompose a global policy and distribute it to each
collaborating party. This ensures autonomy and confidentiality of
each party. Their work is particularly of relevance for cross-
organizational definition of RBAC policies, as performed in our
multi-hospital use case scenario. Currently, our prototypical imple-
mentation relies on a single, global RBAC Web service. However,
we plan to adopt this complementary policy decomposition ap-
proach, which will allow each hospital to employ its own dedicated
RBAC Web service.
8.2. DSL-based security modeling

An integrated approach for Model Driven Security, that pro-
motes the use of Model Driven Architectures in the context of
access control, is presented by Basin et al. [66]. The foundation
is a generic schema that allows creation of DSLs for modeling of
access control requirements. The domain expert then defines
models of security requirements using these languages. With
the help of generators these models are then transformed to
access control infrastructures. However, compared to our
approach, [66] does not address the definition of task-based
entailment constraints.

The approach by Wolter et al. [36] is concerned with modeling
and enforcing security goals in the context of SOA business pro-
cesses. Similar to our approach, their work suggests that business
process experts should collaboratively work on the security poli-
cies. They define platform independent models (PIM) which are
mapped to platform specific models (PSM). At the PIM level,
XACML and AXIS 210 security configurations are generated. Whereas
their approach attempts to cover diverse security goals including
integrity, availability and audit, we focus on entailment constraints
in service-based business processes.

A related access control framework for WS-BPEL is presented by
Paci et al. in [67]. It introduces the RBAC-WS-BPEL model and the
authorization constraint language BPCL. Similar to our approach,
the BPEL activities are associated with required permissions (in
particular, we associate permissions for invoke activities that
try to call certain service operations). However, one main differ-
ence is related to the boundaries of the validity of user permis-
sions: RBAC-WS-BPEL considers pairs of adjacent activities (a1

and a2, where a1 has a control flow link to a2) and defines rules
among them, including separation of duty (a1 and a2 must execute
under different roles) and binding of duty (a1 and a2 require the
same role or user). As elaborated in previous work [21], our ap-
proach also allows to annotate scopes (groups of invoke tasks)
in BPEL processes and hence to apply RBAC policies in a sequential,
but also in a hierarchical manner.

XACML [68] is an XML-based standard to describe RBAC policies
in a flexible and extensible way. Our DSL could be classified as a
high-level abstraction that implements a subset of XACML’s fea-

http://axis.apache.org/axis2/java/core/
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ture set. Using a transformation of DSL code to XACML markup, it
becomes possible to integrate our approach with the well-estab-
lished XACML environment and tools for policy integration (e.g.,
[69]).

8.3. Runtime enforcement of security and other constraints in business
processes

Various approaches have been proposed to incorporate exten-
sions and cross-cutting concerns such as security features into
business process models. Most notably, we can distinguish differ-
ent variants of model transformation [70,30] and approaches that
use aspect-oriented programming [71].

A dynamic approach for enforcement of Web services Security
is presented in [72] by Mourad et al. The novelty of the approach
is mainly grounded by the use of Aspect-Oriented Programming
(AOP) in this context, whereby security enforcement activities
are specified as aspects that are dynamically woven into WS-BPEL
processes at certain join points. Charfi and Mezini presented the
AO4BPEL [73] framework, an aspect-oriented extension to BPEL
that allows to attach cross-cutting concerns. The aspect-oriented
language Aspects for Access Control (AAC) by Braga [74] is based
on the same principle and is capable of transforming SecureUML
[75] models into aspects. A main difference is that AAC does not
operate on BPEL, but on Java programs, and can hence be applied
directly to Java Web service implementations to enforce access
control.

Essentially, our approach can be regarded as a variant of AOP:
the weaved aspects are the injected IAM tasks, and join points
are defined by security annotations in the process. A major advan-
tage of our approach is the built-in support for SSO and cross-orga-
nizational IAM. An interesting extension could be to decouple
security annotations from the WS-BPEL definition, to store them
in a separate repository and to dynamically adapt to changes at
runtime.

A plethora of work has been published on transformations and
structural mappings of business process models. Most notably, our
solution builds on work by Saquid and Orlowska [76], and Eder and
Gruber [77] who presented a meta model for block structured
workflow models that is capable of capturing atomic transforma-
tion actions. These transformation building blocks are important
for more complex transformations, as in our case when multiple
process fragments for enforcement of entailment constraints are
combined for a single action in WS-BPEL. While this work focuses
mainly on deployment time model transformations, other research
also investigates runtime changes of service compositions. For in-
stance, automatic process instrumentation and runtime transfor-
mation have previously been applied in the context of functional
testing [78] and fault detection [79] for service-based business pro-
cesses. Weber et al. [80] investigate security issues in adaptive pro-
cess management systems and claim that such dynamicity
increases the vulnerability to misuse. Our approach is adaptive in
that it allows the ‘‘environment’’ (e.g., access policies) to change
at runtime. However, we currently assume that the process defini-
tion itself does not change. In our ongoing research, we are com-
plementing our approach with support for online structural
process adaptation.

An important aspect of security enforcement is the way how
constraint conflicts are handled at runtime. Consequently, our ap-
proach is related to a recent study on handling conflicts of binding
and mutual exclusion constraints in business processes [46,47].
Based on a formalization of process-related RBAC, this work pro-
poses algorithms to detect conflicts in constraint definitions, as
well as strategies to resolve the conflicts that have been detected.
In our evaluation (see Section 7), we illustrated an example con-
straint conflict that lead to a deadlock and discussed how the plat-
form is able to detect such conflicts. In order to anticipate and
avoid deadlocks altogether, we will eventually integrate these
algorithms with our RBAC DSL.

Although not necessarily concerned with security (i.e., access
control) in the narrower sense, the area of Web service transac-
tion processing [81,82] and conversational service protocols
[83,84] is related to our work on secured business processes.
Put simply, a transactional protocol is a sequence of operations
with multiple participants that have a clearly defined role and
need to collaboratively perform a certain task. Analogously, Busi-
nessActivities are performed by subjects with clearly defined
roles and limited permissions. One could argue that while the
responsibility of transaction control is to ensure that all partici-
pants actually do perform their task, the main purpose of access
control is to ensure that subjects do not perform tasks they are
not authorized to. Amongst others, our approach was influenced
by von Riegen et al. [82] who model distributed Web service
transactions with particular focus on complex interactions where
participants are restricted to only possess limited local views on
the overall process. These limited views are comparable to our
access control enforcement. Our approach also detects if a pro-
cess instance is about to break the required conversational pro-
tocol (i.e., access control policies), in which case we apply a
sequence of compensation actions [81] (e.g., repeat authentica-
tion or terminate instance due to deadlock).
9. Conclusion

We presented an integrated, model-driven approach for the
enforcement of access control policies and task-based entailment
constraints in distributed service-based business processes. The
approach is centered around the DSL-driven development of
RBAC policies and the runtime enforcement of the resulting pol-
icies and constraints in Web services based business processes.
Our work fosters cross-organizational authentication and autho-
rization in service-based systems, and facilitates the systematic
development of secured business processes. From the modeling
perspective, the solution builds on the BusinessActivity extension
– a native UML extension for defining entailment constraints in
activity diagrams. We provided a detailed description of the pro-
cedure to transform design-time BusinessActivity models into
standard activity models that enforce the access constraints at
runtime. Based on a generic transformation procedure, we dis-
cussed our implementation which is based on WS-BPEL and
the Web services framework.

Our approach based on BusinessActivities allows to abstract
from the technical implementation of security enforcement in
the design time view of process models. The detailed evaluation
of the process transformation has shown that process definitions
with injected tasks for security enforcement grow considerably
large. In fact, the additional code for security enforcement in WS-
BPEL is often larger than the actual business logic. This can be seen
as an indicator that our approach can reduce the development ef-
fort as compared to manual implementation, although we did not
empirically evaluate this aspect in detail.

Our extensive performance evaluation has illustrated that the
proposed runtime enforcement procedures operate with a slight
overhead that scales well up to the order of several ten thousand
logged invocations. We can conclude that the overhead consists
of three main parts: (1) the approach builds on digital signatures
for ensuring message integrity, (2) the process determines the role
and permissions of the currently executing user, which results in
additional requests and increased execution time, and (3) the
enforcement of entailment constraints requires querying the log
traces of previous executions of the process. Note that the over-
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head for (1) and (2) does not increase over time (with rising num-
ber of process executions), whereas the overhead for (3) inherently
rises because the log traces are accumulating over time, and more
data have to be evaluated.

The implementation of our prototype still has limitations, and
we discussed strategies to improve some of these limitations in
future work. For instance, advanced synchronization mechanisms
are required for business processes with highly parallel process-
ing logic. Moreover, the query mechanism that checks security
constraints for validity needs to be further optimized for very
large log data sets (in the order of millions of invocations). We
envision advanced data storage and compression techniques, as
well as optimized query mechanisms to further reduce this in-
crease of overhead over time. In our ongoing work we also inves-
tigate the use of additional security annotations and an extended
view of context information. Finally, we plan to shift from a pro-
cess-centric to a more data-centric view and integrate the con-
cept of entailment constraints to our recent work on reliability
in event-based data processing [85] and collaborative Web appli-
cations [86].
Listing 5. Exemplary RBAC DSL statements for hospital scenario.
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