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a b s t r a c t 

Social bots are software programs that automatically produce messages and interact with human users 

on social media platforms. In this paper, we provide an analysis of the emotion-exchange patterns that 

arise from bot- and human-generated Twitter messages. In particular, we analyzed 1.3 million Twitter 

accounts that generated 4.4 million tweets related to 24 systematically chosen real-world events. To this 

end, we first identified the intensities of the eight basic emotions (according to Plutchik’s wheel of emo- 

tions) that are conveyed in bot- and human-generated messages. We then performed a temporal analysis 

of the emotions that have been sent during positive, negative, and polarizing events. Furthermore, we 

investigated the effects on user reactions as well as on the message exchange behavior between bots and 

humans. In addition, we performed an analysis of the emotion-exchange motifs that occur when bots com- 

municate with humans. For this purpose, we performed a systematic structural analysis of the multiplex 

communication network that we derived from the 4.4 million tweets in our data-set. Among other things, 

we found that 1) in contrast to humans, bots do not conform to the base mood of an event, 2) bots often 

emotionally polarize during controversial events and even inject polarizing emotions into the Twitter dis- 

course on harmless events such as Thanksgiving, 3) when bots directly exchange messages with human 

accounts they are, however, indistinguishable from humans with respect to the emotions they send, 4) 

direct message exchanges between bots and humans result in characteristic and statistically significant 

emotion-exchange motifs . 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Currently about 2.46 billion individuals use social media, with a

redicted increase to 3.02 billion until 2021 1 . In general, social me-

ia users can post their own content (such as text messages, pic-

ures, or videos) and also react to posts sent by other users (e.g. by

iking, retweeting, or replying). In recent years, online social net-

orks (OSNs) have become a valuable source of data for studying

uman behavior and detecting patterns in message dissemination

uring various real-world events [28] . For example, Colleoni et al.

15] analyzed political orientation of the US voters while Procter

t al. [59] studied the 2011 riots in England. A recent study by

arner-Soderholm et al. [73] found that the users of OSNs in gen-
∗ Corresponding author at: Vienna University of Economics and Business (WU Vi- 

nna), Austria. 

E-mail address: mark.strembeck@wu.ac.at (M. Strembeck). 
1 https://www.statista.com/statistics/278414/number- of- worldwide- social- network- 

sers/ . 
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ral trust the news that spread among their OSN contacts and that

hey often disclose own private information to their contacts (such

s hobbies, friendship relations, opinions, or political affiliations)

72] . Moreover, Yan and Jiang [76] showed that group influence is

n important factor for deciding which message receives more at-

ention within an OSN community. In addition to helping people

tay in touch with friends and family, OSNs also provide support

uring natural disasters [66] or when organizing political move-

ents [33] . Moreover, numerous studies have also pointed to the

se of OSNs for political campaigning, such as the use of Twit-

er during the 2014 elections to the European Parliament [54] , the

016 Austrian presidential elections [44] , or the 2016 US presiden-

ial elections [48] . 

In this context, social bots may pose a threat to human users

26] because of their potential to manipulate and steer the opin-

ons of human users. For example, Kollanyi et al. [37] indicated

hat even a single bot may flood Twitter users with messages.

side from an increased message load, a high volume of bot-

enerated content also has the potential to negatively affect public

https://doi.org/10.1016/j.osnem.2019.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/osnem
mailto:mark.strembeck@wu.ac.at
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://doi.org/10.1016/j.osnem.2019.04.001
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opinion [8] . Furthermore, Ferrara et al. [26] argued that bots may

be responsible for altering a user’s perception in the Twitter-sphere

or even for destroying a user’s reputation. In recent years, bots be-

came more sophisticated [75] and may convincingly mimic human

behavior [24,26,77] . Thus, studying the behavior of bot accounts as

well as their influence on information dissemination in OSNs has

become an important research topic. 

Kim et al. [36] and Tsugawa and Ohsaki [71] pointed to the im-

portance of studying human emotions conveyed in OSN messages

and showed that emotions affect the diffusion rate of messages.

In this context, Kramer et al. [38] empirically showed that emo-

tions are transferable among OSN users and may lead to emotional

contagion. Thus, the study provided empirical evidence for the im-

portance of written cues (OSN posts) for influencing one’s emo-

tional state. This finding supplements the traditional assumption

that, predominantly, physical non-verbal cues (such as one’s body

language and facial expressions) and inter-personal interactions are

responsible for the emotion transfer among people. 

This paper is an extended version of [45] and is a contribu-

tion to our ongoing work concerning the influence of emotions on

OSN user behavior [see, e.g., [40–44,46] ]. In this paper, we focus

on the commonalities and differences of emotional messages that

have been sent by bots and human users. In particular, we ana-

lyze a data-set consisting of 4.4 million Twitter messages anno-

tated with respect to the presence and intensity of the eight basic

emotions identified by Plutchik [58] . The messages in our data-set

have been sent by 1.3 million distinct Twitter accounts, 35.2 thou-

sand of which have been identified as bots via DeBot [12] . 

In our analysis, we show that human and bot accounts dif-

fer in their behavioral patterns with respect to the emotions they

communicate. In this context, we show that humans conform to

the base emotion of an event (e.g., express sadness or fear during

negative events, or joy during positive events), while bot accounts

spread a more heterogeneous set of emotions. The distinction be-

tween bot and human behavior is especially evident during polar-

izing events (such as political elections), where bot accounts seem

to intentionally choose sides and strategically try to influence hu-

man users. 

However, we also found that when bots directly exchange mes-

sages with human accounts they are indistinguishable from hu-

mans with respect to the emotions conveyed in their messages.

However, our findings also suggest that bots and humans still be-

have differently with respect to the emotion-exchange motifs that

are formed when bots and humans exchange emotional messages.

We use the term emotion-exchange motif [see 39 ] for statisti-

cally significant and over-represented communication patterns that

arise when OSN users (humans or bots) exchange emotional OSN

messages. 

The remainder of this paper is organized as follows. Sec-

tion 2 first provides an overview of related work. Next, Sec-

tion 3 outlines our research approach and Section 4 presents the

results of our analyses. Section 5 then provides a discussion of our

findings and Section 6 concludes the paper. 

2. Related work 

Current bot detection techniques predominantly rely on a set of

carefully chosen features. For example, Botometer [17] uses Twit-

ter’s REST API to fetch a user’s recent tweeting behavior and ap-

plies a specifically trained classifier to compute the likelihood of

an account being a bot. The classifier uses more than 10 0 0 fea-

tures such as language used by an account, a user’s geographic lo-

cation, account creation date, number of followers and followees,

temporal content generation, and the type of content that has been

posted. Another tool, called DeBot [12] , examines the synchronicity

of tweeting behavior among Twitter users for a certain duration of
ime. If users exhibit a synchronous behavior, they are more likely

o be bots. 

Given such tools, research has provided valuable insights into

ot-like behavior. One of the most distinctive features between

witter bots and human accounts results from the tendency of

ots to send a comparatively higher number of tweets per unit of

ime [2,13,37,50,56] . Recently, however, Chavoshi et al. [12] showed

hat Twitter bots may mimic a human-like tweet generation rate

nd may also delete some of their tweets. Twitter bots usually

iffer from humans in their follower-followee ratio. For example,

hile analyzing a sample of 50 0,0 0 0 Twitter accounts, Chu et al.

13] showed that bots attract generally only a few followers but

end to follow a large number of users themselves. 

As for their role on Twitter, multiple studies have shown that

ots actively try to influence Twitter users. For example, Chu et al.

13] and Gilani et al. [29] have shown that bots tend to (re)tweet

pecific URLs, use particular hashtags, or even directly mention tar-

et users in their tweets (via @screenname) to attract more at-

ention to the bot-disseminated content. Savage et al. [63] sub-

equently indicated that bot accounts may trigger a discussion

mong human users on the topics that before have been injected

y these bots. As pointed by Stefanie et al. [67] , bot accounts may

eceive human users by imitating human-like behavioral patterns

nd building trust relationships with human users. 

Especially alarming is a finding by Edwards et al. [22] , who

ndicated that bot accounts may even be perceived as credible

ources in OSNs. In this context, multiple studies discussed the po-

ential dangers that bot account might pose to real-world events

uch as democratic elections. As shown in [25,67] , bots have a po-

ential to sway voters’ opinions, spread misinformation, or even

mplify the influence of a particular political candidate in OSNs.

atkiewicz et al. [60] and Kollanyi et al. [37] examined the role of

ots with respect to US politics and found that bots may strate-

ically boost the dissemination of particular messages (e.g., that

avor a particular political candidate). Moreover, Llewellyn et al.

49] showed that bots actively used trending hashtags (such as

Brexit) to promote specific political messages. 

Since OSNs are predominantly designed to be online social net-

orks of people, human emotions and sentiments conveyed in

SN messages play a vital role in inspiring and motivating vari-

us interactions among human users (e.g., liking, commenting, re-

haring a post). However, a limited number of studies has thus far

ocused on the differences between human and bot accounts with

espect to emotions conveyed in their messages. While studying

he 2014 Indian elections, Dickerson et al. [19] found that humans

isagree more with the base sentiment of the event, as compared

o bots. Everett et al. [24] further investigated the impact of such

hifted (“disagreeing”) sentiments conveyed in bot-generated mes-

ages on the formation of a crowd opinion. The authors indicated

hat such messages are deceitful and can be used by bots to mimic

uman-like behavior. 

Therefore, a topic of particular interest is the analysis of

motion-exchange patterns that discriminate bots from humans. In

ecent years, the concept of network motifs (see Section 3 ) has be-

ome a prominent approach for identifying patterns in networks.

hus far, network motifs [51] have predominantly been used to

tudy structural patterns in various types of biomedical networks,

uch as the structure of metabolic networks [6] or gene regulation

etworks [3] . Lately, network motifs have also found their applica-

ion in studying the structure of online social networks. In particu-

ar, such studies predominantly focus on detecting communication

atterns [see, e.g., [4,14,31,57] ] and the formation of friendship net-

orks [see, e.g., [21,62,70] ]. 

Regarding the motifs that emerge as social media users com-

unicate with each other, Coletto et al. [14] studied dyadic motifs

hat arise when a pair of users discusses controversial as well as
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Fig. 1. Research procedure. 
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Table 1 

Events analyzed in our study. 

Domain Event Number of tweets 

Polarizing ( N = 1,812,573; 41%, RT = 73.90%) 

Politics 1) Death of Fidel Castro 720,548 

2) 2016 Austrian presidential elections 2558 

3) 2016 US presidential elections 891,425 

Pop culture 4) The Walking Dead season 7 premiere 198,042 

Positive ( N = 1,115,587; 25%, RT = 68.88%) 

Sports 5) Rosberg winning Formula 1 215,703 

6) Murray winning ATP 62,184 

7) Rosberg retirement message 34,201 

Pop culture 8) “Beauty and the Beast” trailer release 138,979 

9) “Fantastic beasts” trailer release 64,264 

10) ComiCon Vienna 704 

11) Miley Cyrus birthday 76,270 

12) New Pentatonix album released 9341 

13) Ellen Degeneres medal of freedom 73,854 

Other 14) Thanksgiving 440,087 

Negative ( N = 1,4 90,4 95; 34%, RT = 76.38%) 

Politics 15) Erdogan’s threats to EU 804 

16) US anti-Trump protests 381,982 

Pop culture 17) Death of Leonard Cohen 89,619 

18) Death of Colonel Abrams 1253 

War & 19) Aleppo bombings 995,561 

terrorism 20) Seattle shooting 73 

Other 21) Lufthansa strike 3387 

22) Ransomware in Seattle 2564 

23) Yellowstone incident 15 

24) Earthquake in central Italy 15,237 
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2 https://developer.twitter.com/en/docs . 
3 Note that some events we considered for our study started several weeks before 

we collected our data, such as the bombings in Aleppo or the announcement of 

the US and Austrian presidential elections. For such events, we extracted tweets 

related to an important episode related to the corresponding event. For example, 

we extracted tweets related to the 2016 Austrian presidential elections published 

one week before the actual election date. 
on-controversial topics. Interestingly, the discussion networks de-

ived from controversial and non-controversial data-sets exhibited

istinctive motifs which actually differentiate controversial from

on-controversial discussion patterns. Barash et al. [4] used motifs

o study network structures that support rumor dissemination on

witter. Some studies also investigated the motifs that are char-

cteristic for online social media communication as compared to

-mail communication. For example, Paranjape et al. [57] study

o-called blocking motifs which represent communication patterns

here a node is blocked until it receives a response to a previous

essage. They found that such blocking motifs are more charac-

eristic for the communication patterns on Facebook compared to

-mail communication. 

Zhao et al. [78] investigated motifs arising from a city’s phone

all records and compared them with those found in Facebook

ostings. As a result, they identified chain motifs as representative

atterns for phone call records, while Facebook postings showed a

omparatively higher presence of star-like motifs. Finally, Gurukar

t al. [31] examined temporal aspects of message sending behav-

or on Twitter and Facebook and found motifs that are character-

stic for both social media platforms. In particular, they found that

witter exhibits a high number of motifs where one user, such as

 celebrity, is mentioned frequently for a short period of time (the

henomenon of burstiness on Twitter [34] ). In contrast, a longer

nd more frequent message-sending behavior between the same

et of users seems to be more characteristic for communication via

acebook. 

Some other studies indicate that motifs can be also used to

lassify various online social networking platforms (such as Face-

ook, Twitter, and Google Plus) according to the distributions of

he motifs that are found within the respective platform’s friend-

hip networks [see, e.g., 21,70 ]. Moreover, Rotabi et al. [62] used

otifs to examine strong ties in an undirected communication net-

ork derived from Twitter. 

Even though a couple of papers study motifs in an OSN con-

ext (see above), the application of network motifs for studying

ehavioral patterns that result from interactions of different types

f users/agents is still considerably understudied. In our previous

ork on emotion-exchange motifs, we especially investigated mo-

ifs that emerge as bots and humans exchange messages during

iot events, i.e. a class of events that predominantly produces neg-

tive emotions (see [41,42] ). 

. Research procedure 

Our research procedure included seven main phases (see Fig. 1 ).

Phase 1: Data extraction. We systematically collected 4,418,655

weets related to 24 events that can be classified either as pos-

tive (e.g., public holiday, release of a movie, birthday of a pop

tar), negative (e.g., a natural disaster, acts of war), or polarizing
e.g., political elections, death of a controversial political figure)

see Table 1 ). 

For our data extraction, we used Twitter’s Search API 2 which

eturns a number of tweets based on a pre-defined search query

hat includes one or more search (the full list of search terms

hat we used is provided in Table A.13 in Appendix ). In partic-

lar, we queried Twitter by using carefully selected hashtags for

ach of the 24 events [see also 46 ]. For each event, we extracted

weets published within one week since the event’s announce-

ent/occurrence 3 and restricted the extraction to tweets written

n English language only. To this end we used the “lang ” language

arameter which is provided by Twitter’s API and takes an ISO

39-1 code to restrict the extracted tweets to a particular language.

n total, it took three months to collect the tweets related to the

4 events in our study (October 2016 - December 2016). 

https://developer.twitter.com/en/docs
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Algorithm 1: Emotion extraction. 

Data : C, Lexicon_dict, Secondary_dicts 

Result : Emotion vector for each c ∈ C 

1 C _ clean = [ ] ; 

2 Emoticons = [ ] ; 

3 Lemmatized = [ ] ; 

4 foreach c i ∈ C do 

/* clean unnecessary HTML, tags */ 
5 C _ clean.append( RemoveCode (c i )) ; 

6 end 

7 foreach c i ∈ C_clean do 

/* Extract emoticons */ 
8 Emoticons.append( CodeSmiley (c i )) ; 

9 end 

10 foreach c i ∈ Emoticons do 

/* Lemmatize the short texts */ 
11 Lemmatized.append( Lemmatizer (c i )) ; 

12 end 

13 dict _ emot _ v = { } ; 
14 foreach c i ∈ Lemmatized do 

15 foreach sent q ∈ sent iment s do 

16 dict _ emot _ v [ i ][ sent q ] = 0 

17 end 

/* Split text to sentences */ 
18 dict _ emot _ v [ i ] = { } ; 
19 sentences = SplitToSentence (c i ) ; 

20 foreach s j ∈ sentences do 

/* Split sentence to words */ 
21 words = SplitToWord (s j ) ; 

22 foreach w k ∈ words do 

/* Find lexicon match */ 
23 if w k ∈ Lexicon _ dict then 

/* Update emotion score corresponding to 
w k */ 

24 dict _ emot _ v [ i ][ Lexicon _ dict[ w k ][0]]+ = 

[ Lexicon _ dict[ w k ][1] ; 

/* Find negation and intensifiers */ 
25 foreach w r ∈ [ w k −3 : w k −1 , w k +1 : w k +3 ] do 

26 foreach d t ∈ Second ary _ d icts do 

/* Updating emotions related to w k */ 
/* using negation and intensifiers */ 

27 if w r ∈ d t then 

28 dict _ emot _ v [ i ][ Lexicon _ dict[ w k ]]+ = 

d t [ w r ] ; 

29 end 

30 end 

31 end 

32 end 

33 end 

34 end 

35 end 

36 return dict_emot_v ; 
Phase 2: Data pre-processing. After obtaining the data-set, we

conducted several pre-processing steps. For example, we removed

duplicate entries and information irrelevant with respect to emo-

tion extraction, such as URLs and HTML tags. 

Phase 3: Emotion extraction. In this phase, we applied our emo-

tion extraction procedure to the pre-processed data-set. In partic-

ular, the emotion extraction relies on a number of heuristics used

to assess emotions in written texts (such as negation, emoticons, or

adverbs of degree, for details see Algorithm 1 and [40] ) and results

in an own vector of emotion intensities for each of the 4.4 million

tweets, i.e. for each tweet in the data-set we identified the pres-

ence and the intensity for each of the eight basic emotions found

in the Plutchik’s wheel of emotions (anger, disgust, fear, sadness,

joy, trust, surprise, anticipation). In our previous work [see 40 ], we

tested the accuracy of our procedure on a sample of 7691 short

texts that contain features which are characteristic for online social

media texts (such as typos, abbreviations, and smileys), achieving

the accuracy of 0.85 (F-measure). 

Compared to related approaches [see, e.g., 1,69 ] that detect

emotions belonging to Plutchik’s wheel, our approach provides an

intensity score for each of the eight basic emotions for each tweet.

In contrast, Abdul-Mageed and Ungar [1] identified the presence

of a dominant emotion in a tweet by restricting their tweets to

only those that include at least five words and an emotional hash-

tag at the end of a tweet. After deploying a Gated Recurrent Neu-

ral Network (GRNN), they achieved an overall accuracy of 0.96 (F-

score). Suttles and Ide [69] reduced the classification complexity by

drawing from Plutchik’s theory of emotional polar opposites which

postulates that a person can experience one of two polar emo-

tions. According to Plutchik’s wheel, polar opposite emotions are

anger or fear, joy or sadness, anticipation or surprise, and disgust

or trust. Thus, the authors deploy four independent binary classi-

fiers to make binary decisions which opposing emotion would be

most probable (e.g. sadness or joy). Similarly to [1] , they consider

hashtags and in addition emoticons and emojis for their emotion

prediction task, achieving an overall accuracy of 0.75-0.91 4 . 

Phase 4: Bot detection. Next, we extracted the list of unique

screennames (Twitter user names) from the tweets in our data-set.

This list of screennames has then been analyzed via DeBot [9,10] to

obtain a bot score for each Twitter account. DeBot examines cor-

related account activities in near real-time [9] and searches for

synchronized behavior [11] to distinguish between bot and human

accounts. DeBot has been validated for its accuracy in a number

of empirical evaluations [see, 11 ]. In a human evaluation, the bots

identified by DeBot achieved a 94% agreement with the assessment

of human judges [see, 9 ]. Moreover, 45% of the accounts flagged as

bots by DeBot were subsequently suspended by Twitter. 

In total, we processed 1,317,555 Twitter accounts, 35,247 of

which were identified as bots by DeBot. This gave us an overall

percentage of 2.67% bot accounts in our data-set. 

Phase 5: Multiplex network construction. After bot detection,

we reconstructed the corresponding communication network

by following the @-traces. On Twitter, two users can directly

communicate with each other by mentioning their respective

screennames preceded by the @ symbol (e.g., @TwitterUser). To
4 Note, however, that the design of a user study with human annotators consid- 

erably impacts the perceived overall precision of the emotion detection task. In [1] , 

human annotators had to either agree or disagree that an automatically assigned 

emotion is relevant for a tweet, while Suttles and Ide [69] limit the annotators to 

two pre-selected polar emotions, “neutral” and “don’t know” as possible answers. 

In contrast, the evaluation of our approach relied on Schimmack’s method for affect 

measurement [see, 64 ] according to which we asked annotators of different ages, 

different genders, and cultures (Western and Eastern Europeans, Americans, Aus- 

ralians and Asians) to first identify whether an emotion is present in a tweet and 

then assign its intensity without having an insight into the scores assigned by our 

algorithm. 

c  

c  

e  

h  

o  

o  

T  

t

haracterize the communication patterns of bot and human ac-

ounts, we subset the communication network with respect to

dges that are formed when a bot node communicates with a

uman node. We call this subset the bot-focused network . For

ur analysis, we re-constructed three bot-focused networks from

ur positive, negative, and polarizing event data-sets, respectively.

able 2 shows some basic structural information for each of the

hree bot-focused networks. 
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Table 2 

Information about the three bot-focused networks: number of nodes and edges, network density, average degree μ and its vari- 

ance var , as well as the number of weakly connected components including the average number μ and the standard deviation 

sd of the members per components. 

Domain Nodes Edges Density Degree Connected components 

Polarizing 7164 8735 0.0 0 02 μ = 1 . 22 , v ar = 276 . 71 752, μ = 9 . 53 , sd = 190 . 10 

Positive 2250 2448 0.0 0 04 μ = 1 . 09 , v ar = 33 . 67 449, μ = 5 . 01 , sd = 34 . 79 

Negative 6789 10538 0.0 0 02 μ = 1 . 55 , v ar = 198 . 21 559, μ = 12 . 14 , sd = 229 . 39 
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Algorithm 2: Motif detection. 

1 Input: input_network; 
2 Output: list_of_motifs = []; 
3 Initialize: i = 0; 
4 # ENUMERATE AND CLASSIFY subgraphs 
5 def procedure: esu_vf2(list_layers) 
6 foreach l in list_layers do 
7 subgraphs = esu(l) 
8 dss = degree_set(subgraphs) 
9 for dss do in parallel 

10 foreach s in subgraphs do 
11 subgraphs’ = subgraphs \ s 
12 foreach s’ in subgraphs’ do 
13 if vf2(s, s’) then 
14 assign_common_isomorphism_class 
15 subgraphs’ = subgraphs’ \ s’ 
16 subgraphs = subgraphs \ s’ 

17 end 

18 end 

19 end 

20 end 

21 end 
22 end procedure 
23 # GENERATE LAYERS AND INTER-LAYERS 
24 detect layers in input_network 
25 layer_negative.add_edges_from(layer_anger, layer_sadness, 

layer_disgust, layer_fear) 
26 layer_positive.add_edges_from(layer_joy, layer_anticipation, 

layer_trust) 
27 foreach i in range(length(V(input_network))) do 
28 if v i ∈ V(layer_negative) & v i ∈ V(layer_positive) then 
29 inter_layer.add_edges_from(layer_negative.edge_containing(v i ), 

layer_positive.edge_containing(v i )) 
30 end 

31 end 
32 list_layers = [layer_anger, layer_joy,..., layer_surprise, layer_negative, 

layer_positive, interlayer, input_network] 
33 esu_vf2(list_layers) 
34 # GENERATE NULL MODELS 
35 while i < 10 0 0 do 
36 foreach l ∈ list_layers do 
37 null[l] = matching(l.in_degree(), l.outdegree()) 
38 end 
39 esu_vf2(null) 
40 i = i+1 

41 end 

e  

i  

f  

s  

c  

p
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Next, we constructed a multiplex network consisting of eight

ayers, each of which representing a sub-network of nodes com-

unicating a specific emotion. A multilayer social network is

ormally defined as a quadruple M = (U , L , N, E) where U is a set

f social network users, L a set of layers, E a set of edges, and

 ⊆ U × L [20] . A multiplex network is then a multilayer network

n which all layers include the same set of vertices (users) but on

ach layer the vertices are connected via a different type of edges

i.e. edges representing a particular type of relationship, such as

motions). Our multiplex network counts three positive layers

joy, trust, anticipation 

5 ), four negative layers (anger, fear, disgust,

adness), and an additional layer representing surprise, which

annot be classified as neither positive or negative. By utilizing a

ultiplex network model, we are able to capture multiple types of

elations (i.e. different types of emotions communicated between

airs of users) and embed such relations via emotion-annotated

dges in different layers. Subsequently, this representation of

motion-annotated edges organized in layers brings advantages

or constructing a number of isolated simplex networks. This

roperty allows us to examine patterns that emerge as Twitter

sers communicate emotions that belong to a specific combination

f layers (as described in Phase 6: Motif detection ). 

Phase 6: Motif detection. A network motif is a statistically sig-

ificant subgraph pattern that is over-represented in a real-world

etwork as compared to the subgraph patterns that emerge in syn-

hetically generated networks which have similar characteristics

51] . The edges in the network we analyze carry a semantic mean-

ng. In particular, each edge represents a message which conveys

ne of the eight emotions considered in this study (anger, fear,

adness, disgust, joy, trust, anticipation, surprise). Therefore, we

se the term emotion-exchange motifs to refer to the correspond-

ng subgraph patterns [see also 39 ]. 

In order to detect emotion-exchange motifs, we applied a sub-

raph enumeration procedure so that we can later analyze the ex-

ent to which bot nodes are involved in a motif. In particular, we

pplied the ESU enumeration algorithm [74] to enumerate all pos-

ible subgraphs of size k (see Algorithm 2 ). For the analyses con-

ucted in this paper we set k to 3, i.e. we investigate all subgraphs

onsisting of three nodes. Next, we performed an isomorphism test

n all enumerated subgraphs by using the VF2 algorithm [16] . To

imit the test space in our subgraph pool, we categorized the sub-

raphs into smaller groups based on their degree sequence (i.e., we

re-identified possible isomorphic candidates). Afterwards, we ap-

lied the VF2 algorithm to assign all enumerated subgraphs to an

somorphism class. 

Moreover, in order to determine if a subgraph is statistically sig-

ificant and over-represented in a real-world network, we have to

nsure that it does not emerge by chance. A common approach to
5 We classify anticipation as a positive emotion because Spearman’s correlation 

oefficient ρ indicated a strong correlation between anticipation and positive emo- 

ions (joy and trust); and only a weak correlation with negative emotions (anger, 

ear, sadness, and disgust). For instance, for tweets found in the positive events 

ata-set, anticipation strongly correlated with trust ρ = 0 . 69 , but only weakly with 

ear ρ = 0 . 31 . We observed the same pattern for negative and polarizing events. 

urprise , however, did not exhibit a strong correlation with either positive or nega- 

ive emotions. Therefore, surprise is placed in a separate category in this paper. 

 

r

nsure this property is to generate a set of null models 6 , and test

f the subgraphs found in the null models appear significantly less

requent than in the respective real-world network [23,51,65] . If a

ubgraph is statistically significant for our real-world network, we

an safely assume that it emerges due to specific communication

atterns among bot and human accounts rather than by chance. 

We applied the motif detection procedure described above over

see also Fig. 2 ): 

(a) each of the eight emotion layers individually, 

(b) two aggregated valence layers for positive and negative

emotions, 
6 A null model is a synthetically generated random network which resembles the 

eal-world network that we are analyzing. 
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Fig. 2. Layers used in our analyses (green layers represent positive emotion layers, red represent negative emotion layers, and yellow represents surprise). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 16 types of triads for a directed graph [5] . 
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(c) a valence interlayer (i.e. the edges shared between the set

of common nodes in the two aggregated valence layers for

positive and negative emotions), 

(d) an aggregated network over all eight emotion layers. 

To this end, we generated 10 0 0 null models for each layer. For

the null model generation we used the stub-matching algorithm

[7,53] , and then enumerated and classified all 3-node subgraphs in

each of the null models. We therefore analyzed 12,0 0 0 null mod-

els for the positive, negative, and polarizing events respectively, re-

sulting in 36,0 0 0 null models in total. Finally, we identified mo-

tifs by applying the Z-score measure and a corresponding p-value

( p < 0.05) [23] . 

Since we are dealing with communication networks, the num-

ber of messages (i.e. edges) exchanged between a pair of vertices

may also have a semantic meaning. For example, a higher number

of messages exchanged between two nodes may signal a stronger

personal relationship between two users [see, e.g., 68 ], while a

large number of unanswered messages sent towards one specific

user may indicate an attempt to spam the receiver [see, e.g., 2 ].

Thus, the subgraph enumeration procedure that we apply consid-

ers and stores all the edges between each pair of nodes. 

Since all 3-node subgraphs with weighted edges can be gen-

eralized into one of the 16 possible isomorphic triadic states (see

Fig. 3 ), we use the MAN labeling scheme [18] when reporting on

our general results. Such labels consist of three digits with the

first one standing for the number of mutual edges, the second one

for the number of directed edges, and the third one for the num-

ber of missing edges between a pair of nodes. Furthermore, since

different triads can have the same distribution of edges, the MAN

labeling scheme further distinguishes between those that contain

a cycle (C), are transitive (T), and whose edges have an upward (U)

and downward (D) direction. 

As some of the motifs we found in our analysis also in-

clude self-loops, they are not yet considered in the MAN labeling

scheme. Thus, we introduce two new labels: L R (root self-loop) 7 

and L L (leaf self-loop), and adjust the number of the directed edges

in the MAN scheme accordingly, to uniquely identify tree-like mo-

tifs that contain self-loops. 

The motif detection procedure described above has been per-

formed on a machine with Intel Xeon CPU E3-1240 v5 @ 3.5GHz
7 In our labeling, there is no need to consider between a root of an in-tree and 

an out-tree. Conveniently, MAN labeling already considers the (anti-)arborescence 

of tree graphs by assigning the letters U and D to describe the edge direction in a 

tree. 

 

 

 

 

4 cores/8 threads) and 32 GB RAM. On this machine the proce-

ure took approximately four days to complete. 

Phase 7: Data analysis. In the final step, we analyzed our data-

et to study how emotions communicated by Twitter bots compare

o emotions spread by human users. In particular, we are inter-

sted in the impact of bots on the diffusion of emotional content

nd especially in the role they play in emotion-exchange motifs

hat arise when they directly interact (communicate) with human

sers. Section 4 reports on our findings in four parts: 

1. relative intensities for each of the eight basic emotions as con-

veyed by bots and human users ( Section 4.1 ), 

2. temporal patterns in tweeting of emotional content by bots and

human users ( Section 4.2 ), 

3. user reactions on emotional tweets sent by bots and human

users ( Section 4.3 ), and 

4. emotions conveyed in messages that are directly exchanged

between human and bot accounts, as well as the functional

role of bots in the corresponding emotion-exchange motifs
( Section 4.4 ). 
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Fig. 4. Emotions expressed by human and bot accounts during polarizing, positive, and negative events. The effects of retweets are depicted via a black triangle respectively. 

(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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Table 3 

Presence of retweets in each data-set. 

Polarizing Positive Negative 

Retweets (humans) 73.46% 68.80% 76% 

Retweets (bots) 87.9% 80.37% 79.2% 
. Results 

.1. Intensities of emotions conveyed in bot- and human-authored 

weets 

While examining the intensities of the eight basic emotions,

e found distinct differences between bot and human accounts.

hile humans tend to conform to the base emotion of an event,

e found that bot accounts exhibit a more heterogeneous set of

motions. In particular, we quantify this difference by obtaining

he difference score ( d ) between the sum of intensities of a partic-

lar group of emotions (according to their respective valence, i.e.

ositive or negative). We refer to the group of emotions that cor-

espond to the base emotion of an event as the expected emotions

e.g., a message of joy that is sent during positive events), while

hifted emotions refer to those emotions that do not comply with

he base emotion of an event (e.g., a message of joy that is sent

uring negative events), see also [46,47] . Fig. 4 visualizes positive

motions (anticipation, joy, trust) in green and negative emotions

anger, disgust, fear, sadness) in red. Surprise (yellow) cannot be re-

arded as positive or negative emotion by default. We thus treat it

s a context-dependent emotion. Fig. 4 presents relative emotion

ntensity scores where we averaged each specific emotion e over

he sentence count S divided by the overall number of tweets in a

ata-set ( N ): 
∑ n 

i =1 
e i 
S i 

N 

. 

Our results revealed that during positive and negative events

umans, in contrast to bots, show a larger difference ( d ) between

he intensities of the expected and the shifted emotions. In par-

icular, during negative events the difference between positive and

egative emotions is d n −p = 0 . 192 , while bots exhibit a compara-

ively low score d n −p = 0 . 005 . A similar observation can be made

uring the positive events, where the difference between positive
nd negative emotions is d p−n = 0 . 6 6 6 for human accounts and

 p−n = 0 . 282 for bot accounts. 

As expected, during polarizing events humans and bots exhibit

 comparable behavior by expressing both positive and negative

motions (see Fig. 4 ). Interestingly, however, though the overall ex-

ression of a set of emotions is similar, tweets generated by hu-

an accounts are more negatively inclined ( d n −p = 0 . 0189 ) com-

ared to bots ( d n −p = −0 . 102 ). However, such a tendency of bots to

xpress positive emotions implies that bots use positive emotions

o lean towards one particular polarizing opinion. For example, a

ot-generated tweet with a positive emotion score reads “#Oba-

aFail I’ll be so happy to see this joke move out of the White House!!

VoteTrumpPence16 ”, and clearly reveals a political preference of

he corresponding bot account. 

In addition to the difference score of expected and shifted

motions, we next correlate emotions conveyed in bot-authored

weets with those expressed by human accounts. To this end, we

sed Kendall’s rank coefficient τ , which revealed that humans and

ots disseminate comparative emotions during positive events ( τ =
 . 85 ) and negative events ( τ = 0 . 5 ). However, polarizing events ex-

ibit a noticeably larger distinction with the correlation falling to

 weak positive ( τ = 0 . 14 ). 

Since both humans and bots in our data-sets predominantly

ent retweets (see Table 3 ), we further examine whether the

etweets might have impacted the reported emotion scores. Thus,

n the subsequent analysis, we observe only the unique occur-

ences of tweets (i.e., by excluding the retweets from each data-

et). 
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Table 4 

Results of Welch’s two sample t-test with a 95% confidence level of two samples (bots and humans respectively). 

Numbers in brackets indicate degrees of freedom. Statistically significant results are shown in bold. 

Polarizing Positive Negative 

( N human = 1757663 ; ( N human = 1108577 ; ( N human = 1453591 ; 

N bot = 54910 ) N bot = 7010 ) N bot = 36904 ) 

Anger 

t (with RT) t(57858)=-4.3941, p <0.05 t(1115600) = 5.6, p < 0.05 t(1490500) = −26.82, p < 0.05 

t (without RT) t(121030) = −6.88, p < 0.05 t(69787) = 0 . 752 , p > 0 . 05 t(100350) = −14.30, p < 0.05 

Disgust 

t (with RT) t(1490500) = −16.35, p < 0.05 t(1115600) = 2.34, p < 0.05 t(38559) = −0 . 86 , p > 0 . 05 

t (without RT) t(121030) = −13.26, p < 0.05 t(69787) = −1 . 05 , p > 0 . 05 t(9791) = −1 . 45 , p > 0 . 05 

Sadness 

t (with RT) t(1812600) = −37.86, p < 0.05 t(1115600) = 3.27, p < 0.05 t(1490500) = −60.42, p < 0.05 

t (without RT) t(121030) = −15.37, p < 0.05 t(69787) = −0 . 15 , p > 0 . 05 t(100350) = −24.37, p < 0.05 

Fear 

t (with RT) t(1812600) = −34.08, p < 0.05 t(7083.3) = 3.5, p < 0.05 t(14 90500) = −70.4 8, p < 0.05 

t (without RT) t(121030) = −16.42, p < 0.05 t(69787) = 1 . 95 , p > 0 . 05 t(100350) = −29.63, p < 0.05 

Trust 

t (with RT) t(58244) = 4.63, p < 0.05 t(1115600) = −17.03, p < 0.05 t(1490500) = −17.1, p < 0.05 

t (without RT) t(100350) = 0 . 32 , p > 0 . 05 t(69787) = −11.92, p < 0.05 t(100350) = −10.15, p < 0.05 

Joy 

t (with RT) t(1812600) = 10.87, p < 0.05 t(1115600) = −35.4, p < 0.05 t(1490500) = −17.97, p < 0.05 

t (without RT) t(100350) = −1 . 02 , p > 0 . 05 t(69787) = −24.41, p < 0.05 t(100350) = −8.16, p < 0.05 

Anticipation 

t (with RT) t(58354) = 1.09, p < 0.05 t(1115600) = −14.83, p < 0.05 t(1490500) = −23.73, p < 0.05 

t (without RT) t(100350) = −3.13, p < 0.05 t(69787) = −7.58, p < 0.05 t(100350) = −12.74, p < 0.05 

Surprise 

t (with RT) t(58337) = −1.98, p < 0.05 t(1115600) = 3.78, p < 0.05 t(1490500) = −10.91, p < 0.05 

t (without RT) t(100350) = −0 . 32 , p > 0 . 05 t(69787) = 0 . 14 , p > 0 . 05 t(100350) = −6.37, p < 0.05 
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When adjusted for the effect of retweets, during polarizing

events, positive emotions ( joy, anticipation , and trust ) are amplified

by retweets sent by human and bot accounts. Surprise , however, is

only amplified by the retweets sent by bot accounts (see Fig. 4 -

a). During positive events ( Fig. 4 -b), we found that human- and

bot-generated retweets intensified joy as well as some negative

emotions ( anger, disgust , and sadness ), with anticipation being the

only additional emotion intensified by bot-generated retweets. A

similar observation can be made during negative events (see Fig. 4 -

c). Humans and bots amplify the intensities of positive emotions

( joy, trust , and anticipation ) via retweets. Sadness , however, is only

intensified by bots during negative events. 

We further examine whether such differences between bots and

human accounts are statistically significant and define the follow-

ing null hypothesis: 

H 0 : There is no difference between the mean scores of the emo-

tions sent by bot and human accounts. 

We use Welch’s two sample t-test with a 95% confidence level

where we contrast the emotion scores conveyed in tweets au-

thored by bots and human accounts, respectively. The t-test results

are shown in Table 4 and point to a statistically significant differ-

ence (depicted in bold) in the intensities of emotions spread by

bot accounts and human accounts in all three events (polarizing,

positive, and negative). We therefore reject the null hypothesis. 

In particular, bots communicated on average a higher intensity

of negative emotions ( anger, disgust, sadness , and fear ) during pos-

itive events as compared to human accounts. We also found that

bots do not comply with the positive base emotion during positive

events – a trait which significantly distinguishes bots from human

emotional reactions to positive events [32] . Our t-test results also

indicate that bots tend to send more positive messages contain-

ing joy, trust , and anticipation during polarizing events compared

to human accounts. However, as mentioned above, a positive emo-

tion score does not necessarily imply that a message is positive

but might also be biased towards one of the polarizing opinions

(see also Section 5 ). 

When adjusted for the effects of retweets (i.e. by consider-

ing the unique tweets only), we found that no particular emo-

tion is more intensely expressed in unique tweets generated by
 t  
ot accounts (see Table 4 without retweet (RT) entries). This con-

rms that bots especially tend to amplify certain emotions by

etweeting. 

.2. Temporal emotion score patterns 

In order to examine whether there are distinctive tempo-

al patterns in emotion intensities conveyed in human- and

ot-generated tweets, we contrasted the intensities of positive and

egative emotions averaged over each day of the data extraction

eriod. 

The temporal progression of emotions sent during positive

vents (see Fig. 5 ) reveals that bots and humans exhibit compara-

le behavioral patterns. However, the same does not hold for nega-

ive and polarizing events. With respect to negative events, related

tudies have pointed to the noticeable presence of positive emo-

ions that serve as a coping mechanism. Thus, such positive mes-

ages sent during negative events convey hope, gratitude, empathy,

r comfort [see, e.g., [30,35,46,55] ] and are generally explained via

he so-called undoing hypothesis [27] (the human tendency to re-

ain positive in order to undo the effects of negative emotions). 

This effect is also evident in our negative events data-set. Posi-

ive emotions prevail over the negative ones on specific days (no-

ice the positive emotion peaks in Fig. 6 ). This is especially no-

iceable for the positive emotions communicated by bots (see the

lack cross symbols in Fig. 6 ). 

Finally, we investigate the temporal progression of emotions

uring polarizing events. Fig. 7 shows an expected presence of

ixed emotions communicated by both bot and human accounts.

hough, as previously noted, bots tend to incline towards a higher

ntensity of positive emotions as compared to humans. 

.3. Effects of emotional messages on user reactions 

On Twitter, a user may react to a tweet by sharing it via send-

ng a retweet or endorsing it with a like. In this section, we report

n the effects of emotions conveyed in bot- and human-generated

weets on the corresponding retweets and likes. To this end, we
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Fig. 5. Temporal emotion score patterns during positive events. 

Fig. 6. Temporal emotion score patterns during negative events. 
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istinguish between the positive, negative, and emotionally neutral

essages generated by bots and human accounts. 

As shown in Table 5 , human-generated tweets generally receive

n average more retweets compared to bot accounts. In terms of

ikes, however, bots attract on average more likes during polarizing

nd negative events, compared to human accounts. However, when

onsidering the effects of emotionally neutral tweets, our data

eveals that human accounts attract more retweets and likes com-

ared to bots during all three events. Thus, our findings indicate

hat emotions are an important aspect when studying the poten-

ial influence of bots on Twitter (note that in our data-sets no
eutral bot-generated tweet received more attention than

motionally-neutral tweets generated by human accounts). 

.4. Message exchange behavior between humans and bots 

In this section, we report on our findings concerning the emo-

ions communicated via direct messaging between human ac-

ounts and bots. As noted in previous studies [see, e.g., 61 ], direct

essaging (via @-mentioning on Twitter) typically accounts for

 smaller number of messages in a Twitter discourse. Depending

n the respective event, our data-sets count between 6%-9% of
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Fig. 7. Temporal emotion score patterns during polarizing events. 

Table 5 

Summary of user reactions (mean and standard deviation) on emotional content 

disseminated by bot and human accounts. Bot-related table entries which received 

more attention in terms of liking or retweeting as compared to human-generated 

tweets are printed in bold. 

Polarizing Positive Negative 

Positive 

RT human 6142.62 ± 18921.07 5727.02 ± 17087.09 1502.73 ± 4890.3 

Like human 1.19 ± 76.18 1.48 ± 77.44 1.06 ± 40.57 

RT bot 2629.78 ± 11332.41 1389.35 ± 5674.46 404.8 ± 1209.07 

Like bot 1.47 ± 28.41 0.815 ± 13.18 1.49 ± 34.11 

Negative 

RT human 2910.25 ± 7452.78 407.41 ± 1677.12 1703.89 ± 5157.2 

Like human 1.17 ± 94.23 1.3 ± 29.19 0.94 ± 35.47 

RT bot 1991.02 ± 5654 608.41 ± 2269.43 659.69 ± 2213.14 

Like bot 2.26 ± 37.94 0.678 ± 14.91 1.38 ± 27.84 

Neutral 

RT human 5546.71 ± 17686.4 7857.25 ± 11441.16 1625.84 ± 4787.55 

Like human 1.29 ± 84.38 1.61 ± 130.12 0.94 ± 34.61 

RT bot 2943.51 ± 6763.51 1375.88 ± 3724.72 1003.24 ± 3455.20 

Like bot 0.87 ± 14.59 0.73 ± 12.33 0.89 ± 20.84 

Table 6 

Direct involvement of bots in message exchanges with human accounts. Number 

of messages refers to the total number of messages sent in each data-set. Messages 

per bot/human show the mean number of messages sent per bot or human account 

followed by the respective standard deviation in brackets. 

Polarizing Positive Negative 

Number of messages 119177 (6.57%) 103079 (9.24%) 99543 (6.68%) 

Messages per bot μ = 2 . 43(4 . 34) μ = 2 . 16(3 . 21) μ = 4 . 28(10 . 58) 

Messages per human μ = 1 . 51(2 . 29) μ = 1 . 37(1 . 88) μ = 2 . 42(9 . 88) 
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messages that include a direct @-mentioning. Though the subset

of bots involved in direct messaging is relatively low, they still

tend to send on average more messages than human accounts (see

Table 6 ). 

However, although having a relatively low involvement with re-

spect to the overall data-set, bots seem to prefer certain emotions

when sending direct messages. Fig. 8 shows that overall bots send
essages of a higher emotional intensity compared to human ac-

ounts during polarizing events. In particular, when averaged and

ompared to the emotions communicated by human accounts, four

motions are statistically significant in bot messages (as shown in

able 7 ). These emotions are anger, sadness, fear, and trust, reveal-

ng that bots tend to amplify the expression of negative emotions

uring polarizing events. Similar findings also hold for the posi-

ive events in which bots tend to send negative emotion messages

f a higher emotional intensity as compared to humans. Interest-

ngly, we found that although bots were responsible for a substan-

ial amount of (broadcast) messages bearing positive emotions dur-

ng negative events (see Section 4.2 ), they still tend to conform to

he base mood of the event when they send direct messages to

ertain users. 

.4.1. Emotion-exchange motifs 

Finally, we examine the occurrence of emotion-exchange mo-

ifs in our data-sets. Emotion-exchange motifs are statistically sig-

ificant communication patterns that arise when OSN users (hu-

ans or bots) exchange emotional OSN messages. Each of these

ommunication patterns (i.e. each emotion-exchange motif) is rep-

esented via a corresponding k -node subgraph. In principle, this

nalysis can be done for subgraphs of any size k . In this paper,

owever, we focus on triadic communication patterns, i.e. we in-

estigate 3-node subgraphs. Thus, we identify structural subgraph

atterns that emerge when bot accounts exchange emotional mes-

ages with human accounts. To this end, we enumerated all pos-

ible 3-node subgraphs in each of the emotion-annotated commu-

ication networks and detected those that are significant for our

eal-world networks. 

Our analysis shows that bots tend to form specific subgraphs

hen they communicate emotions to human users. In particu-

ar, we identified 243 distinct motifs that differ in their shape

nd the message-exchange frequency (denoted as edge weights).

hile some are specific for one network only, the others occur

n at least two communication networks (i.e. two out of the three

ommunication networks resulting from the positive, negative, and
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Fig. 8. Emotions sent via direct @-mentioning. Emotion intensities of messages sent by bots are presented in red and emotion intensities sent by human accounts in blue. 

Emotion intensities of messages received by bots are shown in yellow and emotion intensities received by humans in green. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Table 7 

Results of Welch’s two sample t-test with a 95% confidence level of two samples (bots and humans respec- 

tively). Numbers in brackets indicate degrees of freedom. Statistically significant results are shown in bold. 

Polarizing Positive Negative 

( N human = 76188 ; ( N human = 74188 ; ( N human = 39315 ; 

N bot = 1628 ) N bot = 530 ) N bot = 1033 ) 

Anger t(4201.9) = 3.78, p < 0.05 t(1168 . 3) = 0 . 68 , p > 0 . 05 t(4862.6) = −3.18, p < 0.05 

Disgust t(4186 . 9) = 4 . 5593 , p < 0 . 05 t(1170 . 2) = 1 . 29 , p > 0 . 05 t(4839) = −1 . 06 , p > 0 . 05 

Sadness t(4185.2) = 3.816, p < 0.05 t(1170 . 1) = 1 . 82 , p > 0 . 05 t(4882.6) = −5.74, p < 0.05 

Fear t(4190) = 6.09, p < 0.05 t(1167 . 9) = 1 . 09 , p > 0 . 05 t(4895.6) = −6.29, p < 0.05 

Trust t(4209.8) = 2.919, p < 0.05 t(1173) = −0 . 44 , p > 0 . 66 t(4883 . 4) = −5 . 91 , p < 0 . 05 

Joy t(4217 . 8) = 1 . 88 , p > 0 . 05 t(1176.2) = −4.3, p < 0.05 t(4927.1) = −6.35, p < 0.05 

Anticipation t(4265 . 3) = −0 . 77 , p > 0 . 05 t(1176.7) = −2.59, p < 0.0 5 t(4915.1) = −5.71, p < 0.05 

Surprise t(4233) = 0 . 71 , p > 0 . 05 t(1179 . 1) = −0 . 58 , p > 0 . 05 t(4867.9) = −2.29, p < 0.05 
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olarizing events in our data-set). Below, we report on a set of re-

ccurring motifs that emerge in at least two communication net-

orks. In our analysis, we identified in total 29 motifs that occur

n two of the communication networks we investigated and 13 that

ccur in all three communication networks. Subsequently, we first

eport on the set of re-occurring motifs and then on the network-

pecific motifs that emerged in one network only. 

For the purposes of our analysis, we define the bot ratio θB 

s the observed number of bots ( B o ) in relation to the maximum

mount of possible bots ( B t ) in a subgraph. 

B = 

F (B o ) 

F (B t ) 

Re-occurring motifs. In general we found that bots take over

ifferent functional roles while engaging in an exchange of emo-

ional messages with human users. Table 8 summarizes the gen-

ralized motifs 8 categorized with respect to their triadic census

ype and labelled according to the MAN labeling scheme. Nodes

ith a bot ratio larger than 33% are depicted in a darker color
8 The motifs in Table 8 focus on the structural characteristics of the respective 

-node subgraphs while generalizing over the edge weights. 

q  

m

 

r  
nd labelled with the corresponding bot ratio (in %). While com-

unicating emotions, bots and human accounts tend to form out-

tars (021D), in-stars (021U), message chains (021C), and triads

ith reciprocal edges (111U, 111D). When observing the bot’s role

n the emotion-exchange motif, we distinguish between bots that

end an emotional message (i.e. directly mention a human user via

screenname) and receive an emotional message (i.e. attract an @-

ention by a human user). 

In contrast to the belief that bots predominantly send messages

for example to spam human users [see, e.g., 67 ]), our results in-

icate that bots tend to predominantly attract messages (by being

entioned) during polarizing events (see Table 8 ). The same, how-

ver, does not hold for the positive and negative events where bots

end to equally send and receive messages within a triad. Though

he generalization of the triads shown in Table 8 reveals informa-

ion on the position and the general role of bots in the emotion-

xchange motifs, the question still remains to which extent bots

ake over such roles (when considering the message exchange fre-

uency) and on which emotion layers such motifs occur in our

ultiplex network. 

For further analyses, we thus include the edge weights which

eveal the number of messages that have been sent or received by
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Table 8 

Bot ratio in common emotion-exchange motifs. Nodes with a bot ratio 

> 33% are depicted in a darker color. 

Label Polarizing Positive Negative 

021D 

021U 

021C 

111U 

111D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

n  

t  

n

 

e  

b  

a  

m  

s

 

p  

b  

t  

m  

t  

c  

e  

m  

a  

e  

w  

i  

m  

b  

(  

s

 

s  

I  

a  

(  

w  

t  

0  

i  

t  

a  

b  

c  

e  

t  

l  

a

 

p  

l  
each node in the respective emotion-exchange motif, as well as the

emotion layer of the multiplex network on which the emotion ex-

change occurred. Table 9 summarizes the in-degree ( deg in ( v )) and

out-degree ( deg out ( v )) scores for bot and human accounts aver-

aged over the total in- and out-degree on each layer of our multi-

plex network. For the purpose of simplicity, Table 9 reports on the

emotion-exchange motifs found on: 

1. positive emotion layers : including the individual positive emo-

tion layers trust, joy, anticipation , as well as all combinations of

positive emotions, 

2. negative emotion layers : including the individual negative emo-

tion layers anger, fear, sadness, disgust , as well as all combina-

tions of negative emotions, 

3. interlayer : a combination of positive and negative emotions, and

4. layers including surprise : the individual surprise layer and the

aggregated emotion layer including surprise . 

The results in Table 9 show that polarizing and negative events

exhibit a high message-receiving degree (in-degree deg in ( v )) con-

sistently over all layers in our multiplex network. However, during

positive events bots tend to predominantly send messages (higher

out-degree deg out ( v )) when communicating expected emotions (i.e.
Table 9 

Average in-degree ( deg in ( v )) and out-degree ( deg out ( v )) for h

emotions (joy, trust, anticipation, as well as combinations o

anger, sadness, as well as combinations of negative emotions

terlayer), and surprise (individual surprise layer, aggregated la

Polarizing Po

deg in ( v ) deg out ( v ) de

Positive emotion layers 

Human 0.34 (0.80) 1.98 (0.69) 2

Bot 3.31 (1.74) 0.49 (0.93) 0

Negative emotion layers 

Human 0.22 (0.71) 2.57 (1.09) 1.

Bot 4.15 (2.13) 0.56 (0.86) 2

Interlayer (combination of positive and negative emotion

Human 1.62 (1.58) 2.26 (1.55) 2

Bot 2.12 (2.40) 1.41 (2.12) 1.

Inclusion of surprise 

Human 1.08 (0.57) 1.61 (1.13) 2

Bot 1.59 (0.84) 0.91 (1.35) 1.
ositive emotions). Moreover, when analyzing messages conveying

egative emotions during positive events, we found that bots tend

o receive such negative messages rather than send them (e.g. as a

egative reaction of a human user to a bot-generated tweet). 

Network-specific motifs. In addition to re-occurring motifs, our

motion-annotated communication networks also exhibit a num-

er of motifs that appear in a single network only (i.e. motifs that

re specific to polarizing, or positive, or negative events only). Such

otifs comparatively often 1) contain self-loops (48.15%), or, to a

maller extent, 2) take the form of a closed triad (2.88%). 

Self-loop motifs. Motifs containing a self-loop predominantly ap-

ear in the Twitter communication about negative events (cf. Ta-

le 1 ). In particular, we identified 62 motifs containing self-loops

hat are unique to negative events (53% of all emotion-exchange

otifs appearing during negative events). We found that such mo-

ifs especially appear when bots and human accounts exchange a

ombination of positive and negative emotions (58% of all emotion-

xchange motifs appearing during negative events, excluding the

otifs on the surprise layer), rather than for messages where

 single emotion (such as anger) is communicated (16.7% of all

motion-exchange motifs appearing during negative events). It is

orth mentioning that the nodes producing self-loops by address-

ng themselves (via @screenname) have predominantly been hu-

an accounts rather than bots (see Tables 10 and 11 ). As pointed

y Molyneux and Mouro [52] , Twitter users apply self-mentioning

via @screenname) in their tweets to bypass the 140-character re-

triction and provide more content on of their previous tweets. 

As shown in Table 10 , it seems that bots tend to attract mes-

ages rather then send them during polarizing and negative events .

nterestingly, while engaging in message-exchanges during neg-

tive events, bots receive, on average, more positive messages

 μ = 3 . 19 , sd = 2 . 71 ) than negative ( μ = 1 . 97 , sd = 2 . 32 ). However,

ith respect to messages that have been sent by bots, we found

hat they send approximately the same amount of positive ( μ =
 . 57 , sd = 1 . 43 ) and negative ( μ = 0 . 55 , sd = 1 . 23 ) messages dur-

ng negative events. Our analysis has further shown that bots tend

o predominantly attract (i.e. receive) messages when engaging in

 direct messaging behavior where mixed emotions are exchanged

etween bot and human accounts (in this case bots on average re-

eive mu = 7 . 94 , sd = 5 . 23 messages). In contrast to the emotion-

xchange behavior during positive events (see below), bots tend

o predominantly and consistently attract messages on all emotion

ayers of our multiplex network when communicating during neg-

tive events. 

However, when analyzing the emotion-exchange motifs that ap-

ear during positive events , we found different patterns. In particu-

ar, during positive events we did not find any self-loop motif on a
uman and bot accounts while communicating positive 

f positive emotions), negative emotions (fear, disgust, 

), a combination of positive and negative emotions (in- 

yer including surprise) in the common set of motifs. 

sitive Negative 

g in ( v ) deg out ( v ) deg in ( v ) deg out ( v ) 

.1 (1.27) 1.27 (1.01) 1.25 (1.23) 1.93 (1.69) 

.87 (1.35) 2.01 (1.60) 2.40 (2.2) 1.40 (1.95) 

38 (0.82) 1.97 (1.26) 1.52 (1.36) 1.49 (1.40) 

.00 (2.03) 0.82 (1.42) 1.59 (1.80) 1.66 (2.18) 

 layers) 

.27 (1.54) 1.23 (1.59) 1.36 (1.02) 1.53 (1.41) 

26 (2.51) 2.87 (3.36) 1.56 (1.75) 1.34 (1.85) 

.78 (1.69) 1.56 (1.38) 1.91 (1.72) 2.19 (1.94) 

48 (2.54) 3.91 (3.36) 2.73 (1.82) 2.11 (2.62) 
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Table 10 

Average in-degree ( deg in ( v )) and out-degree ( deg out ( v )) for human and bot accounts while communicating positive 

emotions (joy, trust, anticipation, combination of positive emotions), negative emotions (fear, disgust, anger, sadness, 

combination of negative emotions), a combination of positive and negative emotions (interlayer), and the inclusion 

of surprise (surprise, aggregated) in motifs containing self-loops. 

Polarizing Positive Negative 

deg in ( v ) deg out ( v ) deg in ( v ) deg out ( v ) deg in ( v ) deg out ( v ) 

Positive emotion layers 

Human 0.5 (0.58) 1.5 (1.73) 4.01 (4.12) 2.24 (1.85) 2.2 (3.13) 4.03 (4.42) 

Bot 5 (0) 3 (0) 0.02 (0.13) 3.36 (1.45) 3.19 (2.71) 0.57 (1.43) 

Negative emotion layers 

Human 2 (2.05) 1.5 (0.51) – – 0.98 (0.96) 1.79 (1.51) 

Bot 0 (0) 1 (0) – – 1.97 (2.32) 0.55 (1.23) 

Interlayer (combination of positive and negative emotions) 

Human 2 (2.3) 4 (2.45) 4.5 (4.01) 2.5 (1.77) 3.06 (1.54) 5.78 (4.58) 

Bot 4 (1.41) 0 (0) 0 (0) 4 (0) 7.94 (5.23) 1.41 (3.23) 

Inclusion of surprise 

Human 2.6 (2.54) 2.1 (1.06) 4.34 (4.34) 3.17 (2.68) 0.98 (1.21) 2.45 (2.43) 

Bot 0.13 (0.52) 1.13 (0.52) 0.02 (0.13) 2.31 (1.27) 3 (2.71) 0.58 (1.06) 

Table 11 

Bot ratio in emotion-exchange motifs containing self-loops. Nodes with a 

bot ratio > 33% are depicted in a darker color. The labelling is adjusted for 

the presence of self-loops. 

Label Polarizing Positive Negative 

031C L R 

031D L L 

121D L L 

031U L L 

031U L R 

121D L L 

031D L R 

121U L R 

041U L L 

n  

a  

H  

m  

t  

Table 12 

Position of bot accounts in closed triad motifs. Nodes with a bot 

ratio > 33% are depicted in a darker color. 

Layer Motif Data-set Layer 

021D Positive Aggregated, positive 

120U Negative Interlayer 

120D Negative Interlayer 

t  
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9 Note that these motifs are not generalized and show the actual number of mes- 

sage exchanged between two nodes as edge weights. 
egative emotion layer, i.e. no self-loop motifs emerge when bots

nd humans exchange negative messages during positive events.

owever, we found that bots send comparatively more positive

essages during positive events ( μ = 3 . 36 , sd = 1 . 45 ) as compared

o human accounts ( mu = 2 . 24 , sd = 1 . 85 ). Furthermore, we found
hat during positive events human accounts receive significantly

ore messages on all emotion layers (see Tables 10 and 11 ). 

Closed triad motifs. The closed triads 9 formed in human-bot in-

eractions are depicted in Table 12 . Our findings show that during

egative events humans and bots predominantly form closed triads

n the interlayer where they exchange a combination of positive

nd negative emotions. During positive events , closed triads occur

hen humans and bots exchange positive emotional messages as

ell as on the aggregated layer (i.e. when humans and bots ex-

hange a combination of messages including positive and negative

motions, as well as surprise). In this context, it is worth men-

ioning that during polarizing events , where it is expected that OSN

sers engage in discussions, we found no involvement of bots in

 closed triad. Although closed triad motifs exist in our polarizing

ata-set, they occur only when humans exchange messages with

ther humans, indicating that in polarizing events closed triad mo-

ifs are characteristic for a human-like communication. 

. Discussion 

Our findings show that humans, in contrast to bots, conform to

he base emotion of an event, confirming corresponding “offline”

ocial studies. For example, Heath [32] demonstrated that peo-

le predominantly disseminate positive messages during positive

vents and negative messages during negative events in a word-of-

outh manner. However, by comparing our findings to the ones in
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the related work, we cannot confirm the results reported by Dick-

erson et al. [19] , according to which humans disagree more with

the base sentiment of an event compared to bot accounts. One

possible explanation for this result is that we analyzed tweets ex-

tracted from 24 different events while Dickerson et al. [19] studied

a single event only (the 2014 Indian election). 

Everett et al. [24] further noted that bots may send messages

that diverge from the base emotion of the respective event in order

to deceive human users. In our study, there was a noticeable devi-

ation from the base sentiment during positive events. More specif-

ically, we found that bots tend to be more negative during positive

events ( d p−n = 0 . 6 6 6 for human accounts, and d p−n = 0 . 282 for bot

accounts) and more positive during negative events ( d n −p = 0 . 192

for human accounts, and d n −p = 0 . 005 for bot accounts), see also

the t-test results in Table 4 . As an exception to this finding, we

discovered that if bots engage in a direct message exchange with

human accounts during negative events , they tend to exhibit a more

human-like behavior and conform to the base mood of the event

(i.e. in negative events, bots predominantly send negative emo-

tional messages, such as news about a death of a celebrity or a

terror attack in which they include the screenname of a Twitter

user. An example of a bot-generated tweet reads: “Follow @human-

screenname live streaming from #Aleppo #StandWithAleppo ”). 

Identifying emotionally polarizing bots during polarizing events

can serve as an indicator for an attempt of opinion swaying. In our

study, we found that bot-generated retweets have an impact on the

perceived emotionality in the Twitter discourse. In particular, our

results indicate that during negative events positive emotions are

amplified by the effects of retweets, similar to an amplification of

positive emotions during polarizing events . 

Below, we show examples of bot messages with positive emo-

tion scores during polarizing events . The bot-generated messages

below have been sent in the run-up to the 2016 US presidential

elections: 

• “#ObamaFail I’ll be so happy to see this joke move out of the

White House!! #VoteTrumpPence16 ”, 

• “So proud of my daughter! She just voted for @realDonaldTrump

#Millennials4Trump #Women4Trump #VoteTrumpPence16 #Amer-

ica ”. 

In the run-up to the 2016 Austrian presidential elections, bots

disseminated messages such as [see also 44 ]: 

• “Save your country, take back control and stop Islamisation. We

support Austria’s Hofer in tomorrow’s election. #bpw16 ”. 

For the election events we analyzed, messages that support one

particular candidate make up the vast majority (99.37%) of posi-

tive bot-generated tweets (87.8% of those messages are retweets).

Therefore, we can conclude that bots clearly follow a strategic

agenda during elections (and probably during polarizing events in

general). 

Our findings further indicate that bots tend to spread (retweet)

more negative emotions during positive events (86.41% retweets)

as compared to humans. Such bot-generated tweets found in our

data-set either: A) express a negative opinion about a prospectively

positive topic, such as: 

• “This was not as good as the last one. It’s hard to ink when there

is a lot of black #FantasticBeasts ”, 

• “That explains the retarded haircut. I hate his mother even more.

#FantasticBeasts ”, 

• “Nico Rosberg articulates the F1 season and his resignation but of-

fers no real clues as to why #NicoRosberg ”, 

or: B) surprise the readers by injecting topic-wise unrelated neg-

ative content. For example, human-generated Thanksgiving tweets
n our data-set are predominantly positive (congratulating and fes-

ive messages). In contrast, bots generated topic-wise unrelated

weets that convey negative emotions and were injected into the

hanksgiving discourse by using the #thanksgiving hashtag, e.g.: 

• “Sissy Mitt Romney signed Massachusetts gun ban #thanksgiving

#Trump #MAGA ”. 

As noted in related studies [see, e.g., 61 ], we also observed a

elatively low involvement of bots in direct messaging behavior

via @screenname) on Twitter. However, though low in involve-

ent, those bots who directly communicate with human users

end emotional messages with a higher frequency compared to hu-

an accounts. This finding might lead to the assumption that the

ame pattern will be observable in specific triadic patterns that are

ormed as bots communicate with human accounts. Interestingly,

owever, this was not the case. Instead, our analysis showed that

he corresponding emotion-exchange motifs more often emerge as

ots receive messages (via @screenname mentioning) rather then

end them. This finding was especially evident for the polarizing

nd negative events we analyzed (see Table 1 ). This also suggests

hat during polarizing and negative events communication patterns

hich emerge when bots predominantly send emotional messages

rather than receive them) are sporadic and, in general, not rep-

esentative for our real-world networks (i.e. those patterns are not

tatistically significant and over-represented and therefore most of-

en do not qualify as emotion-exchange motifs). 

In contrast, the positive events in our data-set showed a com-

aratively higher involvement of bots in message-sending behav-

or. This might be due to the nature of the corresponding OSN dis-

ourse since negative events (such as a terror attack) or polarizing

vents (such as political elections) can lead to a discussion of a

igher emotional arousal than a positive event (such as a happy

irthday greeting). Therefore, it is likely that messages related to

olarizing or negative events create more heated reactions of a

igher emotional intensity from human users (message senders).

n example from our data-set reads (the screennames have been

nonymized): 

• sent by a bot (news): “Follow @human-A-screenname live

streaming from #Aleppo #StandWithAleppo ” (at 2016-11-29,

01:25:02) 

• replied to by a human (personal reaction): “Kids being bombed

with chlorine-filled barrels #aleppo #syria @bot-A-screenname ”

(at 2016-11-30, 10:15:06) 

Thus, we found that bots use emotional content as means to at-

ract more attention for their own tweets in terms of content pop-

larity and visibility (expressed via likes and retweets), and also

nspire, attract, and potentially steer emotional reactions from hu-

an users in a direct messaging behavior. 

In a previous study, we investigated communication patterns

motifs) that emerge during riot events [see, 42 ]. The results of

hat investigation indicated that social media discussions of hu-

ans and bots do not result in statistically significant patterns if

e look at message exchanges only and disregard the emotional

one of the respective message exchange. However, when consid-

ring emotions the differences between human and bot accounts

ecome more evident. By systematically analyzing communication

atterns mined from 24 real-world events, we found that in a di-

ect interaction with humans (i.e. direct and/or bilateral commu-

ication instead of broadcast messages) bots generally send ex-

ected emotions and in turn receive a comparatively higher vol-

me of messages conveying shifted emotions. This finding intu-

tively diverges from the general trend that bots author compar-

tively more tweets (broadcast messages) which convey shifted

motions than human accounts and reveals that while engaging

n a one-to-one message sending behavior with human accounts
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i.e. in direct and/or bilateral communication), bots conform to the

ase mood of an event and behave more human-like. 

. Conclusion 

In this paper, we systematically analyzed 4.4 million tweets re-

ated to 24 real-world events that have been generated by 1.3 mil-

ion user accounts, 35.2 thousand of which were identified as bots.

ach of the 24 events has been categorized as either positive (e.g.,

ublic holiday, birthday of a celebrity), negative (e.g., terror attacks,

cts of war), or polarizing (e.g., elections, death of a controversial

olitical figure). 

We examined the differences between bots and human ac-

ounts with respect to the specific emotions they disseminate.

ur findings indicate that humans generally conform to the base

motion of the respective event. Bots, on the other hand, con-

ributed to the higher intensity of shifted emotions (e.g., positive

motions during negative events) to receive more attention (in

erms of likes or retweets) to their content. In particular, our re-

ults indicated that emotional bot-generated tweets attract more

ikes and retweets if the tweet conveys shifted emotions. Inter-

stingly, emotionally neutral tweets authored by bots did not re-

eive much attention in terms of likes and retweets. We further

iscovered that bots are not only most active during polarizing

vents ( N(tweets ) pol = 3 %, N(tweets ) pos = 0 . 6 %, N(tweets ) neg = 2 %)

ut they also tend to emotionally polarize during controversial

vents (such as elections). Such a polarization was evident espe-

ially in the election-related data-sets. For example, we found that

ots inject shifted emotions into topic-wise unrelated Twitter dis-

ussions (e.g., negative messages related to the 2016 US presiden-

ial election that include a # thanksgiving hashtag). 

Thus, the emotions conveyed in tweets may serve as a valuable

ndicator for distinguishing bot or a human activity. However, we
Table A.13 

Search terms used in the data extraction procedure. 

Event Search terms 

1) Death of Fidel Castro #Castro, #FidelCastro, #

2) 2016 Austrian presidential elections #vdb2016, #vdb, #Vand

#NorbertHofer2016, #H

3) 2016 US presidential elections #VoteTrumpPence, #m

#HillaryClintonForPresi

#USElection, #ElectionD

4) The Walking Dead season 7 premiere #twd, #thewalkingdead

5) Rosberg winning Formula 1 Nico Rosberg win, #F1F

Rosberg triumph, #Nico

6) Murray winning ATP Murray #ATPFinals, An

7) Rosberg retirement message #NicoRosberg retire, #N

8)“Beauty and the Beast” trailer release #BeautyAndTheBeast 

9) “Fantastic beasts” trailer release #FantasticBeasts, #FBAW

10) ComiCon Vienna #viecc 

11) Miley Cyrus birthday #HappyBirthdayMiley, 

12) New Pentatonix album released #PTXMerryGentlemen 

13) Ellen Degeneres medal of freedom #MedalofFreedom Ellen

14) Thanksgiving #Thanksgiving 

15) Erdogan’s threats to EU #Erdogan warn EU, #Er

16) US anti-Trump protests #NotMyPresident, #Ant

17) Death of Leonard Cohen #LeonardCohen, Leonar

18) Death of Colonel Abrams #ColonelAbrams, Colon

19) Aleppo bombings #StandWithAleppo, #A

20) Seattle shooting #SeattleShooting, #seat

21) Lufthansa strike #Lufthansa strike, #Luf

22) Ransomware in Seattle #SanFrancisco railway, 

23) Yellowstone incident #yellowstone #hotpot 

24) Earthquake in central Italy #PrayForItaly, #Earthqu

#ItalyEarthquake, #Terr
dentified one exception to this finding – while communicating via

irect @-mentioning (instead of sending broadcast messages), bots

end to act more human-like and conform to the base mood of the

espective event. In this context, we identified a number of charac-

eristic communication patterns that arise when humans and bot

ccounts directly exchange messages (via @screenname). Our ini-

ial assumption was that bots would predominantly take the role

f message senders (e.g. acting as spammers). However, our analy-

is revealed that in the emotion-exchange motifs we identified, bots

ore often act as message receivers rather then message senders.

his pattern was especially evident during polarizing and negative

vents, where bots receive emotional reactions from human users. 

In our future work, we plan to further investigate the effects

f basic as well as derived emotions on the diffusion of informa-

ion in OSNs. Moreover, we plan to investigate whether the same

atterns found on Twitter hold for other OSN platforms. Extending

ur work on the emotion-exchange motifs, we further plan to ex-

mine the role of specific user accounts and the temporal aspects

f the formation of emotion-exchange motifs. 
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ppendix A 
CastroDeath, Fidel Castro 

erBellen, #bpw2016, #mehrdennje, #NorbertHofer, 

ofer, #Austrianelection, #Austria #election 

aga, #MakeAmericaGreatAgain, #VoteHillary, 

dent, #ImWithHer, #StrongerTogether, #USElections2016, 

ay, Donald Trump, Hillary Clinton 

, #Lucille #Negan, #WalkingDead 

inale, #AbuDhabiGP, Rosberg champion, 

Rosberg 

dy Murray, andy_murray 

icoRosberg farewell, #NicoRosberg farewell, #Rosberg retire 

TFTmovie, #FantasticBeastsandWhereToFindThem 

#MileyCyrus birthday, @MileyCyrus birthday 

, Ellen Medal of freedom 

dogan threat EU, #Erdogan blackmail EU 

iTrump, #TrumpRiot, #TrumpProtest, #NeverTrump 

d Cohen 

el Abrams 

leppo, Aleppo bombing 

tle #shooting 

thansa cancel 

#SanFrancisco hack, #SanFrancisco ransom 

ake #Italy, 

emotocentroitalia, #terremoto #Italy, Italy earthquake 
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