
Deriving UML-based Specifications of
Inter-Component Interactions from Runtime Tests

Thorsten Haendler, Stefan Sobernig and Mark Strembeck
Institute for Information Systems and New Media

Vienna University of Economics and Business (WU Vienna), Austria
{firstname.lastname}@wu.ac.at

ABSTRACT
In this paper, we present a model-driven approach for the de-
rivation of inter-component-interaction specifications from
runtime tests. In particular, we use test-execution traces to
record interactions between architectural components based
on testing object-oriented systems. The resulting models are
specified via UML diagrams. In order to transform test exe-
cutions to corresponding component and interaction models,
we define conceptual mappings (transformation rules) bet-
ween a test-execution metamodel and the UML2 metamodel.
As a proof of concept, we integrated the approach into our
KaleidoScope tool.

CCS Concepts
•Software and its engineering → Object oriented ar-
chitectures; Unified Modeling Language (UML); Soft-
ware testing and debugging; Model-driven software en-
gineering; Dynamic analysis; Documentation;

Keywords
Component Interaction; Test-Execution Viewpoint; Scenario-
based Runtime Tests; UML; Component-based Architecture

1. INTRODUCTION
A component-based architecture structures a software sy-
stem in terms of components and connections between them
[34]. (Re-)Structuring a system into components provides
multiple advantages regarding system maintainability and
code reusability at the large, e.g., by abstracting from de-
tails of object-oriented code structures [29]. Graphical mo-
dels support a software system’s stakeholders in understan-
ding and communicating a specific software architecture [9,
8]. Today, UML models [27] are a de facto standard for gra-
phically documenting software structures and processes.

In recent years, researchers have found disadvantages resul-
ting from a purely manual creation and maintenance of soft-
ware architectures [31]. For instance, given the need for ha-
ving an up-to-date documentation of (possibly) large com-
ponent-based architectures, manual documentation mainte-
nance becomes time consuming and error-prone. In response,
approaches have been proposed for recovering a component-
based architecture (and architecture documentation) semi-
automatically from implementation artifacts of object-ori-
ented systems (see, e.g., [1, 33]).

Architectural components are connected by provided and
required component interfaces (e.g., specified via interface

contracts [21]) which define how a component can be used
by other components. Component interfaces provide import-
ant information for multiple system stakeholders: e.g., for
system integrators or architects (design by reuse) or for de-
velopers of components (design for reuse; [9]). A critical
facet of component interfaces is the documentation of in-
tended component interactions (e.g., specified via synchro-
nization contracts [4]). Therefore, in the field of modeling
service-oriented architectures, such interaction-aware com-
ponent interfaces can be captured as collaborations between
components by using corresponding interaction models (e.g.,
ServiceInterfaces in SoaML [25]). There are existing
approaches for recovering a component-based architecture
(see, e.g., [1, 33]) and for reverse-engineering behavioral mo-
dels (see, e.g., [19]) from object-oriented systems. However,
they fall short in a) integrating specifications of component
interactions and a corresponding component model as well
as in b) deriving component interactions from calls between
object features (e.g. properties and methods).

In this paper, we propose a derivation technique to close this
gap. In our previous work [16], we presented an approach
for deriving interaction models from testing object-oriented
systems using scenario-based runtime tests. The resulting
UML models reflect inter-object interactions. In this present
approach, specifications of interactions between interfaces
of architectural components are derived semi-automatical-
ly1 from runtime tests. Deriving such inter-component in-
teractions involves clustering component interfaces and set-
ting up filters for interactions between these interfaces. The
resulting test-based interactions are expressed via respecti-
ve UML diagrams [27]. Our approach builds on conceptual
mappings (transformation rules) between a test-execution
metamodel, on the one hand, and the UML2 metamodel,
on the other hand. As a proof of concept, we extended our
KaleidoScope tool2 to support the proposed approach.

The remainder of the paper is structured as follows. Secti-
on 1.1 gives a high-level overview of the suggested proce-
dure. In Sect. 2, we explain the characteristics of the pro-
posed test-execution viewpoint and illustrate a short ap-
plication example. Section 3 focuses on the derivation of
inter-component-interaction specifications. In particular, we
provide the corresponding metamodels and the conceptual

1Manually performed by the software engineer are the tasks
of allocating classes to components and, optionally, selecting
a specific test scenario (see below).
2Available for download from our website [15].

This is an extended version of the paper published as: Haendler, T., Sobernig, S. and Strembeck, M. (2016): Deriving UML-based Specifications of Inter-Component Interactions from Runtime Tests, In: Proc. of the 31st Symposium on Applied Computing (SAC 2016), Software Engineering Track, Pisa, Italy, ACM, April 2016In the extended version, we reinserted the text that we had to cut from the paper due to the page restrictions for the conference version.

metamodel mappings. In Sect. 4, we introduce our prototy-
pical implementation. Section 5 gives an overview of related
approaches and Sect. 6 concludes the paper.

Software

Engineer

System

under Test

Test

Script

Test Run

tests

speci es

1

Model-to-Model

Transformation

de nes

extraction extraction

selects a

analyses

2

3

source

conforms to

4
5

6

7

optionally

test scenario

Inter-Comp.-Interaction

Speci cation

Model

Builder

Class-to-

Comp. Allocation

Test-Execution

Traces

Test-Execution Model

Test-Execution

Metamodel

Conceptual

Mappings

UML 2

Metamodel

target

conforms to

implements

Automated Activity
Manual Activity
Dependency

develops

Metamodel

Mapping

source

target

Figure 1: Conceptual overview of deriving test-based
inter-component-interaction specifications.

1.1 Conceptual Overview
Fig. 1 illustrates the suggested procedure for deriving test-
based specifications of inter-component interactions. A soft-
ware engineer (in the roles of a software developer or a test
developer respectively) implements the system under test
(SUT) and specifies the test script (step 1©). Our approach
requires the clustering of SUT classes to architectural com-
ponents (step 2©). This task can be performed manually
by software architects (e.g., by structuring/annotating the
source code using name spaces or packages, or by using a
DSL or automatically (e.g., based on extracted traits of
cohesion and coupling of classes [20]). Next, based on in-
strumenting the test run (e.g., using dynamic analysis), a
test-execution trace model is extracted automatically (step
3©). Then, by default, the specifications of all relevant test

scenarios are derived. Therefore, the test-execution model
(including the class-to-component allocation and the test-
execution traces; source model, step 5©) is transformed auto-
matically to inter-component-interaction specifications (tar-
get model, step 6©). This transformation is executed by a
model-builder engine which implements (e.g., in QVT opera-
tional [24]) the conceptual mappings (transformation rules)
between the test-execution metamodel and the UML2 meta-
model. The concrete source and target models are instances
of the corresponding metamodels. Optionally, a specific sce-
nario can be selected by the software engineer (step 4©).
Finally, however, the resulting UML model can be used for
analysis of the system behavior (see step 7©).3

2. A TEST-EXECUTION VIEWPOINT
An architectural view [9] represents an abstracted perspec-
tive on a software system’s elements, on relations between
them, and, optionally, on the system context. Each view
conforms to a viewpoint and reflects concerns of stakeholder
roles. The system’s runtime behavior is one important facet
for architecture documentation and is therefore included in
multiple viewpoint models (see, e.g., [6], [3]).
3The proposed procedure is fully supported by our Kalei-
doScope tool [15].

<<Interface>>

InterfaceBx

+operationB1a()

+operationB1b()
<<Interface>>

InterfaceAx

+operationA2a()

<<Interface>>

InterfaceCx

+operationC3a()

TestScenarioX

<<Component>>

ComponentA

<<Component>>

ComponentB
<<Component>>

ComponentC

<<Speci cation>>

portAx

portBx

portCx

:ComponentA
:ComponentB

:ComponentC

portAx

portCx
portBx

Dependency (use/required)

portCy

portAy

portAz

portBzportBy

:InterfaceAx :InterfaceBx :InterfaceCx

sd TestScenarioX

A

C

operationB1a() operationC3a()

operationA2a()

operationB1b()

true

true

true

false

B

Figure 2: Example of a derived inter-component-
interaction specification with SUT components and
involved interfaces A©, the specification class B©,
and owned interactions between interfaces C©.

2.1 Characteristics
To capture interactions between architectural components,
we define and apply a test-execution viewpoint with the fol-
lowing three characteristics. First, the views document the
intended behavior in terms of feature-call protocols (see C©
in Fig. 2) of the system under test (SUT; see process view
of the “4+1 view model” [18]); i.e. intended reactions of the
SUT triggered by stimuli specified in the test script. Second,
the views provide contextual information on the test script
and the test environment (see allocation viewtype [9]). This
context allows for bi-directional mappings between test (or
test parts) and (architectural) elements of the SUT; similar
to a functional mapping [3]:

1. Links from a selected test part to covered SUT ele-
ments (A© in Fig. 2) and their behavior (see C© in Fig.
2; test-based slicing, e.g., for use-case-driven documen-
tation [6]).

2. Links from a selected SUT element to covering test
parts. For instance, by selecting a component, the ow-
ned ports indicate the covering test scenarios (see, e.g.,
ComponentB in A© in Fig. 2).

Third, the views combine with those conforming to other
viewpoints as additional slicing criteria, such as the com-
ponent & connector viewpoint (e.g., represented by UML
component models, A© in Fig. 2). This way, specifically tai-
lored documentation can be obtained (model slicing).

Test-based Component Interfaces. Component inter-
faces represent a form of contract which defines how to use
a component (see, e.g., [21]). The proposed specifications
put emphasis on component interfaces and their attached
interaction as synchronization contracts [4]. A synchroniza-
tion contract specifies the correct order (a.k.a. protocol) of
mutual feature calls. The sequence of calls triggered by the
stimuli of a test scenario represents such an intended order.

Partial Interaction Models. Runtime tests such as sce-
nario-based tests (see below) provide a specific structure of
nested/ordered test parts. This way, views can be derived
from different hierarchical parts, e.g., from a specific test ca-
se or test block (see Fig. 4).4 Hereafter, we use test scenarios,
since they conceptually correspond to usage scenarios that
describe an intended interplay between components. This
way, each derived partial model reflects interactions filtered
and abstracted in two dimensions [30], horizontal (including
only components and interfaces involved in a specific test
scenario) as well as vertical (including only interactions bet-
ween these interfaces triggered by the test scenario).

inter-component call

intra-component call

ClassA1

+operationA1a()

+operationA1b()

ClassA2

+operationA2a()

+operationA2b()

ComponentA

ClassC1

+operationC1a()

+operationC1b()

ClassC2

+operationC2a()

+operationC2b()

ClassC3

+operationC3a()

+operationC3b()

ComponentC

ClassB1

+operationB1a()

+operationB1b()

ComponentB

Figure 3: Classes of an
exemplary SUT allo-
cated to components.6

Listing 1: Excerpt from an
exemplary test script.
set sX [::STORM::TestScenario

new -name scenarioX
-testcase cX]

$sX setup_script set {
set a1 [::CompA::ClassA1 new]
$a1 operationA1b

}
$sX test_body set {
set b1 [::CompB::ClassB1 new]
set c3 [::CompC::ClassC3 new]
$b1 operationB1b
$b1 operationB1a

}
$sX postconditions set {
{expr {[[::CompC::ClassC3

info instances]
operationC3a] == true}}

}

2.2 Application Example
An exemplary object-oriented system consists of six clas-
ses allocated to three components (see Fig. 3). The owned
object features are connected by multiple call dependencies
(i.e. inter- vs. intra-component calls). A minimal test scena-
rio for this SUT (testScenarioX) is depicted in Listing
1. Consider now, for instance, a software developer who in-
tends to modify or to reuse ComponentA. She wants to iden-
tify the component’s behavioral inter-dependencies to other
components. Based on the derived specifications in Fig. 2,
the participation of ComponentA in three test scenarios can
be established; as indicated by the owned ports portAx-z
(see A©). The developer can then decide to investigate one
test scenario to review the corresponding inter-component
interactions therein, such as called and calling features (e.g.
operationA2a in fragment C© of Fig. 2).

4In [16], we already highlighted the option space provided
by the structure of scenario-based tests for configuring the
derivation of tailored partial models (by combining scenario-
test parts and feature-call scopes).
6For clarity, parameters and return types of operations are
omitted.

3. DERIVING SPECIFICATIONS OF
INTER-COMPONENT INTERACTIONS

3.1 Capturing Inter-Component Interactions
Test-Execution Metamodel. Our approach applies sce-
nario-based testing [32, 22] to document the interplay bet-
ween objects in the SUT. The metamodel of scenario-based
testing, including the test-framework, the internal test-block
structure and the test-execution traces, defined in [35, 16], is
extended to capture the allocation of classes to architectural
components (see Fig. 4).

1

1..* 1..*

+definition

1

+definition

TestSuite TestCase TestScenario

TestPart TestResult ExpectedResult

Setup Precondition TestBody Postcondition Cleanup

Block AssertionExpression FeatureCallDe nition

+target

1

*

+callee
1

*

1

+source

1

*

+caller
1

Class

Feature FeatureCall

Instance

ReturnValueArgument

Trace

0..1

0..1

checkedAgainst

0..1

*
*

0..1

0..1 * * 0..1

+body

1..*

Operation Property

Constructor Destructor

+owningClass

1

+owned *
Feature

*

/owning

Block

/owned

Call

0..1

+definingClass

1

0..11..*

Component ClassDe nition

1

0..1

PackageableElement

owningComponent

0..1

packagedElement
*

Scenario-Test Framework

Block

Structure

Scenario-Test Traces

Class-to-Component

Allocation

Figure 4: Test-execution metamodel including
scenario-test framework (STF;[35]), internal test-
block structure, scenario-test traces [16], and class-
to-component allocation.

Inter-Component Interactions. The SUT’s runtime be-
havior (in terms of execution traces triggered by scenario
tests) is constituted by the mutual interchange of messages
between SUT objects that are calling object features (e.g.,
operations, property setters/getters). For specifying compo-
nent interactions, we abstract from the concrete SUT ele-
ments (e.g., objects and object features) and their message
exchanges by considering calls (message exchanges) between
components only (see, e.g., the example in Fig. 3). Thus, our
approach requires the application of integration tests which
include calls between interfaces (sets of object features) of
architectural components. In our metamodel representation
(see Fig. 4), this criterion is expressed by requiring an ow-

ningComponent of a definingClass of a feature call’s
target to be distinct from the component of the class that
defines the source of that call. Likewise, only those tests
or test parts are relevant, which include at least one inter-
component call (see the constraint expressions in Listing 2
and, for an example, operationB1a in the exemplary test
scenario in Listing 1).

Listing 2: OCL constraints for relevant test scenarios
and feature calls.

1 context TestScenario
2 def: isInterComponentInteractionTest : Boolean =
3 self.getOwnedFeatureCalls->exists(c:FeatureCall | c.

isInterComponentCall)
4 context FeatureCall
5 def: isInterComponentCall : Boolean =
6 self.source.definingClass.definition.owningComponent !=
7 self.target.definingClass.definition.owningComponent

Assumptions. In case that a class is not allocated to a com-
ponent, this class is treated as a component. In case that a
scenario does not include any inter-component call, a speci-
fication for this scenario can not be derived.

3.2 Applied Elements of UML2
For specifying inter-component interactions in the Unified
Modeling Language (UML) [27], we apply a set of component-
and interaction-specific elements of the UML2 metamodel
(see Fig. 5). The example in Fig. 2 illustrates the notation of

Component

(from BasicComponents)

EncapsulatedClassi er

(from Ports)
Port

(from Ports)

Interface

(from Interfaces)

Operation

(from Kernel, Interfaces)

Property

(from Kernel, Interfaces)

BehavioredClassi er

(from BasicBehaviors, Interfaces

Communications)

Behavior

(from BasicBehaviors)

Interaction

(from BasicInteractions,

Fragments) Lifeline

(from BasicInteractions,

Fragments)

Message

(from BasicInteractions)

Class

(from Kernel)

Class

(from Kernel,

StructuredClasses)

0..1 /ownedPort
*

*

/required

*

0..1

ownedBehavior 0..*

1

lifeline*1

message *

*

/provided
*

0..1

ownedOperation

*

0..1
ownedAttribute

*

0..1

ownedAttribute

*

Speci cation

(from UMLStandardPro les)

NamedElement

(from Kernel, Dependencies)

Dependency

(from Dependencies)

Usage

(from Dependencies)

client
1..*

clientDependency
*

supplier1..* supplierDependency

*

Type

(from Kernel)

Model

(from Models)

Package

(from Kernel)

*

type

1

Property

(from Kernel)

*

represents
1

*

type

1

*

*

*

*

«Stereotype»

Figure 5: Selected elements of the UML2 metamodel
[27] for specifying inter-component interactions.

the derived specifications. A specification class (representing
a relevant test scenario; see B© in Fig. 2) contains instances
of UML components (as ownedAttributes) participating
in the corresponding test scenario. Moreover, it contains the
corresponding interaction (as ownedBehavior). This way,
the specification class connects parts A© and C©.

3.3 Conceptual Metamodel Mappings
To transform test-execution traces (and the corresponding
class-to-component allocations) into UML inter-component-
interaction specifications automatically, we define mappings
between the test-execution metamodel (see Sect. 2 and Fig. 4)
on the one hand, and the UML2 metamodel on the other
hand (see Fig. 5). For this purpose, we define a set of concep-
tual mappings formalized by using a transML diagram [14],
which represents transformation rules in a tool and tech-
nology independent manner compatible with the UML. The
mappings are refined by OCL mapping constraints. In Fig. 6,
we report on the 9 most important mappings (M1-9).7

*

cl.
1..*

UML2 Metamodel Test2UMLTest Metamodel

Component

Port

Interface

Operation

Property

Interaction

Lifeline

Message

Class

0..1

/ownedPort

*
*

/requ.

*

0..1

ownedBehavior

0..*

1

*

1

*

*

/prov.

*

Component

ClassDe nition

Class

Instance

Feature

FeatureCall

Block

ReturnValue

TestScenario

Usage

0..1

packagedElement
*

0..1

definition
1

*

definingCl.1

*

callee

1

*

caller 1

0..1

Trace

Model

Package

/owningBlock1

/ownedCall

* 1

0..1

*

1

*

*

source
1

*

target

1

reply

type

1

*

*

*

ownedOp.*

*

suppl.1..*

ownedAttr.
*

*

type1

*

M1

M2

M4

M5

M6

M9

M8
OCL

testScenario.

isInterComponentInteractionTest

OCL

fC.isInterComponentCall

OCL

fC.isInterComponentCall and

fC.callee.oclIsTypeOf(Property)

M3
OCL

OCL

returnValue.featureCall.

isInterComponentCall

OCL

fC.isInterComponentCall

and port.notSpeci ed(fC)

fC.isInterComponentCall and

fC.callee.oclIsTypeOf(Operation)

M7

OCL

fC.isInterComponentCall

and usage.notSpeci ed(fC)

Figure 6: The transML-based specification [14] of
conceptual mappings between the test-execution
metamodel and the UML2 metamodel.

Every Trace instance (reflecting one test run) is mapped
to a Package instance which i.a. contains the partial inter-
action specifications (see M9 in Fig. 6). Each TestScena-
rio instance that contains interactions between two or more
components is mapped to a Model instance, to a Class in-
stance (applying the stereotype Specification) and to an
Interaction instance (see M8). For details of the mapping
constraint isInterComponentInteractionTest, see Li-
sting 2. The UML stereotype Specification indicates
that the applying class specifies a domain of objects without
defining the physical implementation of these objects. The
resulting interaction represents the ownedBehavior of the

7For a complete set of applied mappings and for further
details, see our prototype implementation [15].

specification. Both are owned by the resulting UML model.
In UML, a model captures a view of a system. In our ap-
proach, each Model instance represents a partial scenario-
based inter-component interaction specification.

Deriving Component Elements. At this point, we de-
scribe the metamodel mappings of the component-specific
elements (as depicted by example in A© in Fig.2). A UML
Component is a modular part of a system. Each Component
instance is mapped to an instance of UML Component (see
M1). In UML, a Port indicates an interaction point between
a component and its environment. Each time a component
is involved in a test scenario (i.e. public features are called
or are calling), a Port instance is created (see M2) that is
owned by the corresponding component.

A UML Interface represents a declaration of a set of co-
herent public component features. It specifies a syntactical
contract for the realizing classifier. In our context, it owns
the public features (e.g., operations, property setters/get-
ters) of a specific component that are called during a test
scenario by features of other components. This way, for each
set of public features of a specific component that are used in
the scope of the corresponding test scenario, an Interface
instance (owning these features) is created (see M2-M4). In
order to express the dependencies between interfaces, Usage
relationships are applied. In UML, a Usage is a specializati-
on of Dependency which indicates that a client element
requires a supplier element. In our approach, the client
is represented by the interface which contains the calling
features and the supplier by the interface that owns the
corresponding called features (see M5).

Each port (see above) is typed by the interface that owns
the offered public features of the corresponding owning com-
ponent. A port references required and provided inter-
faces, which are derived according to the value of isCon-
jugated (by default false) from the type of the port (see
[27]). This way, the required interfaces are derived from
the set of interfaces that are used by the type of the port
(see, e.g., portBx in Fig. 2). In turn, the provided inter-
face is derived directly from the type of the port (since the
type is an interface, see [27]).

Deriving Interaction Elements. In addition, we des-
cribe the transformation rules for interaction-specific meta-
model elements related to the ownedBehavior of the test
specification (for example, see C© in Fig. 2). Each Featu-
reCall instance that represents a call between two com-
ponents (isInterComponentCall, see Listing 2) is map-
ped to a Message instance owned by the corresponding in-
teraction (see M8). Based on this feature call (fc), other
elements related to it (e.g., callee, arguments) are mapped.
In particular, the return value is mapped to another instance
of Message with messageSort reply (see M7). All calling
or called features are mapped to instances of MessageOc-
currence. Moreover, each Interface instance serves as a
lifeline in the owned interaction (see M2).

4. PROTOTYPE IMPLEMENTATION
We extended our tool KaleidoScope8 [16] with support for
the approach described above. In particular, KaleidoScope

8Available for download from our website [15].

builds on the testing framework STORM [35] and model
transformations (Eclipse M2M/QVTo) [24]. It can derive
inter-component-interaction specifications from scenario-ba-
sed runtime tests in a semi-automated manner. SUT classes
can be allocated to components by defining packages in the
system’s source code. KaleidoScope then automatically de-
rives a corresponding interaction specification. By default, a
UML model with specifications for all test scenarios is crea-
ted that reflect the inter-component interactions resulting
from the respective test run. Optionally the software engi-
neer can select a specific test scenario.

STORM. The “Scenario-based Testing of Object-oriented
Runtime Models” (STORM) test framework provides an in-
frastructure for specifying and executing scenario-based tests
[35]. STORM provides all elements of our testing metamo-
del (see Fig. 4). KaleidoScope builds on and instruments
STORM. It is implemented using the dynamic object-orien-
ted language “Next Scripting Language” (NX) [23], an ex-
tension of the “Tool Command Language” (Tcl).

KaleidoScope comprises a trace provider and a model builder
component.

Trace Provider. The trace-provider component records
the test-execution traces by intercepting all relevant method
calls triggered by the STORM engine during test execution.
For this purpose, NX/Tcl offers built-in method-call intro-
spection in terms of message interceptors (see [36]) and call-
stack introspection (see [23]). The class-to-component allo-
cation (defined by namespaces/packages in the SUT’s source
code) is also extracted using introspection techniques. The
execution traces are subsequently stored as trace models in
their XMI representation (XML Metadata Interchange spe-
cification [26]), conforming to the Ecore trace metamodel
[16] extended by the class Component.

Model Builder. For transforming our trace models into
UML models automatically, the respective model transfor-
mations are implemented via “Query/View/Transformation
Operational” (QVTo) mappings [24]. QVTo allows for im-
plementing model transformations based on the conceptual
mappings presented in Sect. 3 in a straightforward manner.
In total, 21 mapping actions are executed. The resulting
UML specifications are again persisted in their Ecore/XMI
representation, which allows for import by XMI-compliant
diagram editors (e.g. Eclipse Papyrus [12]).

5. RELATED WORK
Our work is motivated by the observation that execution
views significantly help practitioners to describe, to ana-
lyze, and to exchange information about a given software
architecture. Arias et al. [3] discuss how runtime informati-
on can be reflected by execution viewpoints. They propose
a conceptual model for defining and categorizing execution
views and viewpoints. In particular, they distinguish functio-
nal mapping, deployment, concurrency, and resource usage
viewpoints. In this context, our approach extends the view-
point set to include a dedicated test-execution viewpoint.

Research closely related to our approach falls into three
groups: (1) reverse-engineering interaction models from sy-
stem executions, (2) specifying component interfaces and
inter-component interactions and (3) recovering a software

architecture (or architecture documentation) from system
implementations.

Reverse-engineering Interaction Models. Multiple ap-
proaches for (semi-)automatically reverse-engineering beha-
vioral models from system-execution traces exists, in parti-
cular system behavior in terms of state machines, e.g., [5,
2, 19]. Note that our approach does not cover this kind of
behavior. Our approach compares with contributions which
derive interaction models (e.g., UML sequence diagrams) re-
flecting execution paths (see, e.g. [18]) in object-oriented sy-
stems, for instance, mutual message exchanges [28, 13, 11].
Among these, model-driven approaches, e.g. which provide
a trace metamodel to represent the execution traces, are the
most closely related ones [7, 10]. However, this group of rela-
ted work does not consider interactions (in terms of feature-
call sequences) between provided and required interfaces of
architectural components.

Specifying Inter-Component Interactions. The se-
cond group of related work focuses on the semantic specifica-
tion of component interfaces, especially interface interacti-
ons in a concrete documentation language such as the UML.
Jonkers [17] introduces the ISpec approach for specifying in-
terfaces compatible with the UML. A specification is defi-
ned as a multi-party contract between providers and users of
services. The involved interfaces (called interface suite) are
mutually dependent on each other. Service contracts of the
Service-oriented architecture Modeling Language (SoaML)
[25] provide a specification similar to the one applied in our
approach. Service contracts include interactions (called ser-
vice choreography; also a kind of UML behavior) between
service providers and consumers (both typed by component
interfaces). These contracts allow for specifying the mutual
message exchange between the interfaces. In a SOA, services
represent independent high-level software services (e.g., web
services) provided for other services. In the context of te-
sting object-oriented systems, consumer and provider might
not be as clearly distinguishable as in a SOA context, since
every software component can take on both roles in a gi-
ven specification context (due to mutual dependencies, esp.
callbacks). The UML-based specification proposed in our ap-
proach allows for reflecting components in arbitrary roles.

Recovering Architecture Documentation. Of particu-
lar interest are approaches that focus on interface identifica-
tion and/or perform slicing based on call graphs built from
execution traces. Allier et al. [1] propose a technique for as-
sisting the transformation of object-oriented to component-
based applications. Based on execution traces obtained from
executing (self-defined) use-case scenarios, a set of abstracti-
on and filter techniques are applied for component and inter-
face identification. Identifying components and, especially,
interface specification is based on execution traces, a static
call graph, and statical class relationships. Seriai et al. [33]
propose a process for identifying coherent component inter-
faces in object-oriented applications by using formal-concept
analysis (FCA). Based on all possible interactions/depen-
dencies between components (reflected by a conceptual lat-
tice), features are clustered to component interfaces which in
turn are aligned with the high-level component features. In
contrast, we derive interfaces from test-driven system exe-
cution. In addition to Allier et al. and Seriai et al., who

reflect component interfaces on a syntactic level (provided
and required features), we derive specifications of ordered
interactions (protocols) between these interfaces. Bojic and
Velasevic [6] propose an approach for partially recovering
elements of architectural views using FCA. Given an ad hoc
selection of use-case scenarios that are refined into executa-
ble tests, they suggest slicing partial dynamic call graphs
obtained from executing of the previously defined software
tests. Based on collecting profiling information of test execu-
tions, they derive a conceptual lattice in form of an acyclic
graph, which can serve as basis for deriving UML models.
Our approach builds on a similar idea, however, we put a
special emphasis on identifying interactions between com-
ponent interfaces and on specifying them using UML.

6. CONCLUSION
In this paper, we presented an approach for deriving UML-
based specifications of interactions between architectural com-
ponents from scenario-based runtime tests. Therefore, we
extract automatically execution traces from test runs on
object-oriented systems. Our approach requires that the sy-
stems under test are organized into architectural components.
Our derivation technique is rendered generic by offering con-
ceptual metamodel mappings between a test-execution me-
tamodel and the UML metamodel. As a proof of concept,
we integrated the approach into our KaleidoScope tool.

Limitations. The proposed viewpoint provides process do-
cumentation [18] in terms of sequences of (mutual) object-
feature calls. It reflects the concrete test-execution path fil-
tered, abstracted and specified by the UML. Note that it is
not meant to include complex behavior expressed by states
and state transitions, e.g., as specified by finite state machi-
nes. Furthermore, the proposed approach requires an eva-
luation in a larger project setting. This is because both the
approach’s scalability and its alleged benefits over manually
creating and maintaining software-architecture documenta-
tion must be evaluated empirically.

Future Work. As a next step, we will investigate via con-
trolled experiments to which extent the derived interaction
specifications assist in architecture-related tasks such as the
component refactoring by facilitating system comprehensi-
on. Moreover, we plan to extend the approach to incorpo-
rate behavior-related information from scenario-based runti-
me tests such as behavioral contracts (e.g., inferred pre- and
post-conditions) and measured execution times (inferred ti-
me constraints for interactions). Furthermore, we will review
techniques of comparing or merging the resulting specifica-
tions (e.g., with manually created architecture documenta-
tion). Finally, we seek to explore how the specifications can
be applied for reviewing software tests (e.g., measuring code
coverage and requirements conformance) and the SUT (e.g.,
regarding cohesion/coupling).

7. REFERENCES
[1] S. Allier, S. Sadou, H. Sahraoui, and R. Fleurquin.

From object-oriented applications to
component-oriented applications via
component-oriented architecture. In Proc. WICSA’11,
pages 214–223. IEEE, 2011.

[2] G. Ammons, R. Bod́ık, and J. R. Larus. Mining
specifications. ACM Sigplan Notices, 37(1):4–16, 2002.

[3] T. B. C. Arias, P. America, and P. Avgeriou. Defining
execution viewpoints for a large and complex
software-intensive system. In Proc. WICSA/ECSA’09,
pages 1–10. IEEE, 2009.

[4] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and
D. Watkins. Making components contract aware.
Computer, 32(7):38–45, 1999.

[5] A. Biermann and J. Feldman. On the synthesis of
finite-state machines from samples of their behavior.
IEEE Trans. Comput., (6):592–597, 1972.

[6] D. Bojic and D. Velasevic. A use-case driven method
of architecture recovery for program understanding
and reuse reengineering. In Proc. CSMR’00, pages
23–23. IEEE CS, 2000.

[7] L. C. Briand, Y. Labiche, and Y. Miao. Towards the
reverse engineering of UML sequence diagrams. In
Proc. WCRE’03, pages 57–66. IEEE, 2003.

[8] P. Caserta and O. Zendra. Visualization of the static
aspects of software: a survey. IEEE Trans. Vis.
Comput. Graphics, 17(7):913–933, 2011.

[9] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord,
J. Ivers, and R. Little. Documenting software
architectures: views and beyond. Pearson Education,
2002.

[10] B. Cornelissen, A. Van Deursen, L. Moonen, and
A. Zaidman. Visualizing testsuites to aid in software
understanding. In Proc. CSMR’07, pages 213–222.
IEEE, 2007.

[11] R. Delamare, B. Baudry, Y. Le Traon, et al.
Reverse-engineering of UML 2.0 sequence diagrams
from execution traces. In WS Proc. ECOOP’06.
Springer, 2006.

[12] Eclipse Foundation. Papyrus.
http://eclipse.org/papyrus/. Last accessed: 7
December 2015.

[13] Y.-G. Guéhéneuc and T. Ziadi. Automated
reverse-engineering of UML v2.0 dynamic models. In
WS Proc. ECOOP’05. Springer, 2005.

[14] E. Guerra, J. Lara, D. S. Kolovos, R. F. Paige, and
O. M. Santos. Engineering model transformations with
transML. Softw. Syst. Model., 12(3):555–577, 2013.

[15] T. Haendler. KaleidoScope. Institute for Information
Systems and New Media. WU Vienna.
http://nm.wu.ac.at/nm/haendler. Last accessed: 7
December 2015.

[16] T. Haendler, S. Sobernig, and M. Strembeck. An
approach for the semi-automated derivation of UML
interaction models from scenario-based runtime tests.
In Proc. ICSOFT-EA’15, pages 229–240. SciTePress,
2015.

[17] H. B. Jonkers. ISpec: Towards practical and sound
interface specifications. In Proc. IFM’00, pages
116–135. Springer, 2000.

[18] P. B. Kruchten. The 4+ 1 view model of architecture.
Software, IEEE, 12(6):42–50, 1995.

[19] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic
generation of software behavioral models. In Proc
ICSE’08, pages 501–510. ACM, 2008.

[20] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen,
and E. R. Gansner. Using automatic clustering to

produce high-level system organizations of source
code. In IWPC’98, pages 45–52, 1998.

[21] B. Meyer. Applying ’Design by Contract’. Computer,
25(10):40–51, 1992.

[22] C. Nebut, F. Fleurey, Y. Le Traon, and J. Jezequel.
Automatic test generation: A use case driven
approach. IEEE Trans. Softw. Eng., 32(3):140–155,
2006.

[23] G. Neumann and S. Sobernig. Next-scripting
framework. API reference. https://next-scripting.org,
2015. Last accessed: 7 December 2015.

[24] Object Management Group. Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification,
Version 1.1. http://www.omg.org/spec/QVT/1.1/,
January 2011. Last accessed: 7 December 2015.

[25] Object Management Group. Service oriented
architecture Modeling Language (SoaML)
Specification, Version 1.0.1.
http://www.omg.org/spec/SoaML/1.0.1/, Mar. 2012.
Last accessed: 7 December 2015.

[26] Object Management Group. MOF 2 XMI Mapping
Specification, Version 2.5.1.
http://www.omg.org/spec/XMI/2.5.1/, June 2015.
Last accessed: 7 December 2015.

[27] Object Management Group. Unified Modeling
Language (UML), Superstructure, Version 2.5.
http://www.omg.org/spec/UML/2.5, March 2015.
Last accessed: 7 December 2015.

[28] R. Oechsle and T. Schmitt. JAVAVIS: Automatic
program visualization with object and sequence
diagrams using the Java Debug Interface (JDI). In
Proc. Softw. Visualization, pages 176–190. Springer,
2002.

[29] T. Ravichandran and M. A. Rothenberger. Software
reuse strategies and component markets. Commun.
ACM, 46(8):109–114, 2003.

[30] T. Richner and S. Ducasse. Recovering high-level
views of object-oriented applications from static and
dynamic information. In Proc. ICSM’99, pages 13–22.
IEEE, 1999.

[31] D. Rost, M. Naab, C. Lima, and C. von Flach
Garcia Chavez. Software architecture documentation
for developers: a survey. In Proc. ECSA’13, pages
72–88. Springer, 2013.

[32] J. Ryser and M. Glinz. A scenario-based approach to
validating and testing software systems using
statecharts. In Proc. ICSSEA’99, 1999.

[33] A. Seriai, S. Sadou, H. Sahraoui, and S. Hamza.
Deriving component interfaces after a restructuring of
a legacy system. In Proc. WICSA’14, pages 31–40.
IEEE, 2014.

[34] M. Shaw and D. Garlan. Software architecture:
perspectives on an emerging discipline, volume 1.
Prentice Hall Englewood Cliffs, 1996.

[35] M. Strembeck. Testing policy-based systems with
scenarios. In Proc. SE’11, pages 64–71. ACTA Press,
2011.

[36] U. Zdun. Patterns of tracing software structures and
dependencies. In Proc. EuroPLoP’03, pages 581–616.
Universitaetsverlag Konstanz, 2003.

http://eclipse.org/papyrus/
http://nm.wu.ac.at/nm/haendler
https://next-scripting.org
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/SoaML/1.0.1/
http://www.omg.org/spec/XMI/2.5.1/
http://www.omg.org/spec/UML/2.5

	Introduction
	Conceptual Overview

	A Test-Execution Viewpoint
	Characteristics
	Application Example

	Deriving Specifications of Inter-Component Interactions
	Capturing Inter-Component Interactions
	Applied Elements of UML2
	Conceptual Metamodel Mappings

	Prototype Implementation
	Related Work
	Conclusion
	References

