
RAMLFlask: Managing artifact coupling for Web APIs
Stefan Sobernig

WU Vienna

Vienna, Austria

stefan.sobernig@wu.ac.at

Michael Maurer

Independent Developer

mmaurer.at@gmail.com

Mark Strembeck

WU Vienna

Vienna, Austria

mark.strembeck@wu.ac.at

ABSTRACT

This paper documents a systematic approach (RAMLFlask) to ex-

tending Web application frameworks (Flask) to include support

for interface-description languages (IDLs such as RAML) and code

generation.

KEYWORDS

Web engineering, Web application integration, artifact coupling,

interface description, application generator, Flask, RAML

ACM Reference Format:

Stefan Sobernig, Michael Maurer, and Mark Strembeck. 2020. RAMLFlask:

Managing artifact coupling for Web APIs. In The 35th ACM/SIGAPP Sympo-
sium on Applied Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech
Republic.ACM, NewYork, NY, USA, 4 pages. https://doi.org/10.1145/3341105.

3374116

1 INTRODUCTION

A Web application-programming interface (Web API) defines a

contract between client-side and server-side blocks of a Web appli-

cation in terms of the functionality offered and used, respectively,

by means of HTTP—i.e., resources and the HTTP virtual machine.

Web APIs and the so-provided Web services are typically imple-

mented on top of a Web application framework (e.g., Flask). To this

end, defining and implementing a Web API often involves code that

is boilerplate and scattered. This boilerplate code is incurred by the

respective framework (e.g., Flask, Eclipse Jersey) to implement the

API on top of HTTP. This requires very similar or even identical

code sections (Python function decorators, JAX-RS annotations) to

be included at many places of a code document (see Listing 1).

Web APIs and their implementations are often subjected to

change running in parallel with changes in application code. In

particular upon high frequency of change and/ or for larger Web

APIs, tracking changes at the level of boilerplate code does incur

extra maintenance effort. For this paper, we reviewed the change

history of selected Web APIs and found that, for these projects,

more than 50% of commits made to API definition documents dur-

ing the review periods affected the boilerplate code (decorators,

annotations).

Moreover, Web APIs have multiple technical and non-technical

stakeholder roles during development of a Web application. De-

velopment involves communication and close, document-based

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6866-7/20/03.

https://doi.org/10.1145/3341105.3374116

2 @app.route('/status/<order_id>', methods=['GET', 'POST'])
3 def order_status(order_id):
4 if request.method == 'POST':
5 # Retrieves the status of a specific order
6 set_order_status(order_id, request.form['statusCode'])
7 return
8 else:
9 # Sets the status of a specific order
10 return Response(get_order_status(order_id),
11 mimetype='application/json')

Listing 1: An exemplary Web service order_status using
Flask and its @app.route decorator.

2 /status:
3 /{order_id}:
4 get:
5 description: Retrieve the status of a specific order
6 responses:
7 200:
8 body:
9 application/json:
10 post:
11 description: Sets the status of a specific order
12 body:
13 multipart/form-data:
14 properties:
15 statusCode:
16 description: The status identifier to be stored
17 required: true
18 responses:
19 200:

Listing 2: An interface description using RAML correspond-

ing to the Web API defined in Listing 1

interactions between technical and non-technical stakeholder roles.

To tackle the above issues, the pattern of providing and maintain-

ing interface descriptions [9] has been applied to Web APIs. On

the downside, an interface-description document for a Web API

introduces the complexity of managing co-changes [4] between

documents. This paper makes the following contributions:

• A critical-analytical comparison of established generative tech-

niques for their fit to manage artifact coupling (incl. propagating

changes) in an automated manner between an interface description

(RAML) and the generated Web API (Flask) code (see Section 4.1).

• A proof-of-concept implementation of a mixed generative tech-

nique (generation gap and delegation) for RAML documents and

Flask-based Web API implementations (see Section 4.2).

• A twofold validation of the proof-of-concept implementation

is performed. Second, the generator implementation is tested for

its space and time performance on real-world Web APIs (see Sec-

tion 5.1). Second, the chosen technique is tested for its coverage of

typical changes to Web APIs (see Section 5.2).

2214

https://doi.org/10.1145/3341105.3374116
https://doi.org/10.1145/3341105.3374116
https://doi.org/10.1145/3341105.3374116

The proof-of-concept implementation plus test suite, as well as

a reproduction package incl. the collected interface descriptions is

available for download.
1
An extended version of this paper is also

available [8].

2 WEB APIS

Resource
model

Identifier
model

Interface
model

Platform
model

maps to Interface

Service
Service

Service

re
p

re
se

n
ts

g
e

n
e

ra
te

d

 f
ro

m

provide

Service
Service

Client
require

e.g., resource-oriented, HTTP-based
(RESTful) application

interface-description
languages: OAS,
Swagger, RAML

Figure 3:Main tenets of a resource-orientedWeb application

Interface Descriptions. In a distributed system, an interface

description [9] defines the interface that is provided by service

applications and required by client applications. The interface is

described in a platform-independent and machine-processable man-

ner. Interface descriptions reflect the type of interfaces contracted

between clients and services, e.g., signature interfaces forW3CWeb

Services (based on operations as well as input and output message

types) or resource-oriented interfaces for RESTful services.

Self-description vs. explicit interface description. A self-describing
API allows for answering questions by investigating responses to

calling API endpoints (e.g., HTTP header and payload). In terms of

development style, an API must be fully implemented to realise the

property of self-description [5]. An explicit interface description

can be useful independent from an interface implementation [6],

e.g., for generating server- or client-side code skeletons, endpoint

tests, an API reference manual etc.

3 ARTIFACT COUPLING

Generated artifacts. An explicit interface description for a Web

API written using RAML or OAS will be used to generate different

types of development artifacts. From generative programming and

model-driven software development, more generally, there is em-

pirical evidence on the relative importance of certain artifact types

as generator targets for practitioners. There is evidence on M2T

transformations targeting source code (e.g., Flask/ Python scripts in

Figure 4) being the most widely targeted artifact type for generators

in model-driven approaches [1]. This is confirmed by a recent study

of ours on M2T transformations for UML-based domain-specific

modeling languages [7] and a survey among experts on domain-

specific modeling [3].

Artifact coupling. The use of an explicit interface description plus
generator creates a collection of coupled development artifacts [4].

The RAML document in Listing 2 and the (generated) Flask/ Python

script in Listing 1 form one such a collection. A collection could

1
https://github.com/nm-wu/RAMLFlask

i1 : RAML

i2 : RAML

c1 : Flask

c2 : Flask

c1.1 :
Flask

f

f

Figure 4: Rectangles represent development artifacts con-

forming to a software language (RAML, Flask/Python), and

arrow-headed solid lines are changes. f denotes a mapping

function (model-to-text transformation),△ amanualmodifi-

cation to an artifact, performed by a developer. Dashed lines

denote a consistency relationship. Notation inspired by [4].

also include a generated test suite, client-side stub code, and doc-

umentation strings (see above). Changing one artifact affects the

other artifacts in this collection. Figure 4 illustrates such a change,

turning a RAML interface description i1 into i2.

4 RAMLFLASK

For the proof-of-concept implementation RAMLFlask, the Python
Web-application framework Flask was adopted and refined to in-

clude support for generating API skeletons from interface descrip-

tions written using RAML.

RAMLFlask realises a template-based code generator. As a gen-

erator, it accepts RAML documents as input and produces a Flask/

Python script implementing the HTTP-based interface described

by the RAML document. The generator is based on model-to-text

templates as composable and refinable code assets that encode the

mapping between RAML description elements and Flask framework

elements (see Table 1). The resulting code structure of the Flask-

based skeleton is depicted in Figure 5. The generator templates

are implemented using the Jinja2 template language and template

processor.

RAML RAMLFlask/ Flask

Interface Blueprint

Resource Request-handler class

HTTP method Request-handler method

Security scheme (incl. default) Delegation class

Data type Validation routine (built-in)

Annotation In-code comment

Table 1: The basic mapping between RAML description ele-

ments and Flask implementation elements.

4.1 Managing artifact coupling

The challenge is to manage the coupling of co-changing artifacts in

a way allowing for concurrent changes to the interface description

and changes to the generated code artifacts, while maintaining the

overall consistency (see Section 3). The crux of this challenge is

that there exist multiple different available techniques to tackle

the challenge. The array of techniques must be assessed against

2215

https://github.com/nm-wu/RAMLFlask
https://github.com/nm-wu/RAMLFlask

Flask

Blueprint

RequestHandlerBase

Flask

Response

Request

AResourceHandler ARequestHandler

ResourceBase

:Blueprint

Extension Interface

Inversion of Control

Command

«use»

«use»

«use»

Figure 5: Structural overview of the design artifacts gener-

ated from a single RAML interface description by RAMLFlask.
The UML comments depict the three important architec-

tural design patterns realised by the RAMLFlask generator:

extension interface, command, and inversion of con-

trol.

important decision criteria [2]: separation of generated and curated

code (C1), extensibility (C2), support for overriding generated parts

(C2.1), support for adding to the generated parts (C2.2), portability

(C3), and against the background of a given generator architecture

(RAMLFlask; see Figure 5).

g
e
n
e
r
a
t
i
o
n
g
a
p
(
L
)

e
x
t
e
n
d
e
d
g
e
n
.
g
a
p
(
L
)

d
e
l
e
g
a
t
i
o
n
(
L
)

i
n
c
l
u
d
e
(
L
)

p
a
r
t
i
a
l
c
l
a
s
s
e
s
(
L
)

A
O
P
(
L
)

P
a
r
t
M
e
r
g
e
r
(
T
)

p
r
o
t
e
c
t
e
d
r
e
g
i
o
n
s
(
T
)

C1 + + + + + + + –

C2.1 + + – – ∼ + ∼ –

C2.2 – + – ∼ ∼ + ∼ +

C3 + + + – – – + +

Table 2: Comparing language- and tool-based techniques fol-

lowing [2] (C1-C3). Legend: + (supported); ∼ (partially sup-

ported); – (not support); T (tool-based); L (language-based)

RAMLFlask was designed to strive for supporting critical devel-

opment tasks regarding Web APIs and their interface descriptions

as identified by 14 expert interviews [8]. These tasks are generative

support for route implementation (on top of Flask), for security-

concern implementation, and for validation routines targeting in-

vocation data.

4.2 Design & implementation

«component»

Flask

«component»

raml�cation

Jinja2

«component» «component»

ComparisonServer

«component»«component»

Generator

Figure 6: RAMLFlask components

Structure. The main components of RAMLFlask and their rela-

tionships are depicted in Figure 6. RAMLFlask is designed as an

extension to the Web-application framework Flask
2
. Flask hosts the

code generated by RAMLFlask as a Flask application. The Genera-
tor generates the structures detailed in Section 4: a blueprint, route

decorators and handlers, and utility code. For this, Generator uses

the Jinja2 templating engine. To process a RAML description into a

Python data structure, RAMLFlask integrates with ramlfications, a

third-party RAML parser.

Behaviour: Generation. The skeleton in Figure 5 is created via

a few key operations. First, RAMLFlask creates three directories

to host the different types of generated code. This includes folders

for generated and handwritten routes, for delegates, and for ver-

sion comparison artifacts. Second, the resource and request-handler

classes are created. This is achieved by iterating the RAML docu-

ment for the defined resources and for the validation details (incl.

checks on return types).

5 DISCUSSION

5.1 Time and space performance

We measured time and space performance of the most important

generative tasks supported by RAMLFlask (RAML/ YAML parsing,

creation of server stubs, route implementations etc.) on a machine

equipped with the Intel Core i7 CPU, a 2,8 GHz processor, and

16GB RAM, running macOS. We used CPython 2.7.16 and Flask

1.0.1 as the target platform. All test runs were performed under the

CPython’s default configuration.

As for the design of the computational experiment, time (execu-

tion timings) and space usage (RAM) were collected for 10 publicly

documented Web APIs (incl. GitHub, Instagram, and Gmail), each

described by a single RAML document (see Table 3).

Web API #Routes #SLOC

Grooveshark 1 143

Flickr 4 111

Uber 13 1185

Slideshare 17 3114

Slack 29 1896

Gmail 31 2120

Instagram 33 3379

Wordpress 60 2606

Box 66 4451

GitHub 223 21650

Table 3: Overview of the 10 Web APIs used.

Figure 7 (top) summarises themain findings on time performance.

First, the all but RAML document were processed in below half a

second (0.5s) of total execution time to generate a complete and

operative implementation using RAMLFlask. GitHub, the largest

API in our corpus incl. 223 resources, ran for 2.5s (as denoted by

the triangle in Figure 7). Second, the total execution times are

determined by a single task: the initial server generation including

RAML parsing (using ramlification). See the dotted line of execution

times for this task in Figure 7.

Memory usage was measured as the maximum memory allo-

cated by the operating system (OS) over regular intervals of 5ms for

the duration of all generative steps (see Figure 7, bottom). This is

2
https://palletsprojects.com/p/flask/

2216

0.5

1.0
1.5
2.0
2.5

G
ro

ov
es

ha
rk

Flic
kr

U
be

r

Slid
es

ha
re

Sla
ck

G
m

ai
l

In
st
ag

ra
m

W
or

dp
re

ss
Box

G
itH

ub

e
xe

c
u
ti
o
n
 t
im

e
,
lo

g
(s

e
c
s
)

50

75

100

G
ro

ov
es

ha
rk

Flic
kr

U
be

r

Slid
es

ha
re

Sla
ck

G
m

ai
l

In
st
ag

ra
m

W
or

dp
re

ss
Box

G
itH

ub

m
a
x
.
m

e
m

o
ry

 a
llo

c
a
te

d
 (

m
p
ro

f,
 M

b
)

Figure 7: Comparative boxplots for the total execution times

(top; in log(seconds)) and memory consumption (bottom; in

MB) for processing 10 different Web APIs (100 runs). Both:

Triangles denote the maximum total execution time/ mem-

ory consumed per Web API. Top: The dotted line repre-

sents the worst-case (maximum) execution time for the ba-

sic server-generation task (incl. RAML parsing).

because this maximum memory allocated represents the worst case

from the blackbox perspective of the OS (neglecting garbage col-

lection). All projects except for GitHub were observed to consume

less than 75MB; GitHub required less than 120MB.

5.2 Replay simulations

To collect a corpus of changes toWebAPIs—esp. their route definitions—

the public source-code repositories (GitHub) of two real-world,

Flask-based projects were mined for their change histories: HTTP-

bin and Sync Engine. This repository mining allowed for a twofold:

On the one hand, a corpus of development artifacts was estab-

lished, allowing for replaying critical changes on a Web API using

RAMLFlask. On the other hand, first evidence on types and fre-

quency of changes from the field of Web APIs were collected.

The coded change data was summarised. This descriptive analy-

sis delivered strong support for RAMLFlask’s features: The majority

of resources (routes) has been changed at least once, 70% (35/50)

for HTTPbin and 72.7% (64/88) for Sync Engine. The remainder has

never experienced a change event at all, or only code changes were

recorded. If defined by a RAML interface description, each change

to a route requires a re-generation of the server-side skeleton. From

the total of 151 commits reviewed, 26 (or, 17.2%) involved simul-

taneous modifications to interface descriptions and curated code.

For Sync Engine, the number of co-changes in commits was only

17 out of 234 (7.3%). Such co-changes to interface descriptions and

previously generated, but by now, manually maintained code may

create inconsistencies.

We systematically selected three routes from HTTPbin and Sync

Engine that had been subjected to themaximum of interface-change

types (route additions, removal, modifications) among all routes.

These three routes and their route change history were found to be

representative of 40% of all routes (both projects combined) and of

more than 90% when allowing for partial overlaps.

These three routes and their Flask implementations were then

turned in RAMLFlask implementations. Then, the recorded inter-

face changes as well as code changes were applied to create snap-

shots both of the generated and the source files (blueprint, handlers,

and application subclasses). These can be used to replay the change

history of the three routes in a stepwise manner.

6 CONCLUSION

This paper documents RAMLFlask as an extension to the Flask

Web application framework. RAMLFlask provides a template-based

generator capable of producing an application skeleton from RAML

interface descriptions. In addition, RAMLFlask guides a developer

by highlighting inconsistencies (e.g., as a todos list) when an in-

terface description changes and/ or previously generated code has

been modified. The design and implementation have been system-

atically derived from empirical evidence collected from 14 expert

interviews [8] and from mining of change history of two real-world

Web service projects. In addition, the RAMLFlask research pro-

totype was exercised on real-world Web API descriptions for its

time and space performance (incl. APIs of GitHub, Wordpress, and

Instagram).

REFERENCES

[1] Generative Software. 2010. Umfrage zu Verbreitung und Einsatz modell-
getriebener Softwareentwicklung. Survey Rep. Generative Software GmbH and FZI

Forschungszentrum Informatik. http://www.mdsd-umfrage.de/mdsd-report-2010.

pdf

[2] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram

Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk

Reiss, Alexander Roth, Bernhard Rumpe,Martin Schindler, and AndreasWortmann.

2015. Integration of Handwritten and Generated Object-Oriented Code. In Model-
Driven Engineering and Software Development. CCIS, Vol. 580. Springer, 112–132.
https://doi.org/10.1007/978-3-319-27869-8_7

[3] Bernhard Hoisl, Stefan Sobernig, and Mark Strembeck. 2017. Reusable and generic

design decisions for developing UML-based domain-specific languages. Informa-
tion and Software Technology 92 (July 2017), 49–74. https://doi.org/10.1016/j.infsof.

2017.07.008

[4] Ralf Lämmel. 2016. Coupled Software Transformations Revisited. In Proc. 2016
ACM SIGPLAN International Conference on Software Language Engineering (SLE’16).
ACM, 239–252. https://doi.org/10.1145/2997364.2997366

[5] Luca Panziera and Flavio De Paoli. 2013. A framework for self-descriptive RESTful

services. In Companion Proc. 22nd International Conference on World Wide Web
(WWW’13). ACM, 1407–1414. https://doi.org/10.1145/2487788.2488183

[6] Jonathan Robie, Rob Cavicchio, Rémon Sinnema, and Erik Wilde. 2013. RESTful

Service Description Language (RSDL), Describing RESTful services without tight

coupling. Balisage Series on Markup Technologies 10 (2013), 6–9.
[7] Stefan Sobernig, Bernhard Hoisl, and Mark Strembeck. 2016. Extracting reusable

design decisions for UML-based domain-specific languages: A multi-method study.

Journal of Systems and Software 113 (2016), 140–172. https://doi.org/10.1016/j.jss.

2015.11.037

[8] Stefan Sobernig, Michael Maurer, and Mark Strembeck. 2019. RAMLFlask:
Managing artifact coupling for Web APIs. Technical Report 7367. WU Vienna.

https://epub.wu.ac.at/id/eprint/7367

[9] Markus Völter, Michael Kircher, and Uwe Zdun. 2005. Remoting Patterns: Foun-
dations of Enterprise, Internet and Realtime Distributed Object Middleware. John
Wiley & Sons.

2217

http://www.mdsd-umfrage.de/mdsd-report-2010.pdf
http://www.mdsd-umfrage.de/mdsd-report-2010.pdf
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1016/j.infsof.2017.07.008
https://doi.org/10.1016/j.infsof.2017.07.008
https://doi.org/10.1145/2997364.2997366
https://doi.org/10.1145/2487788.2488183
https://doi.org/10.1016/j.jss.2015.11.037
https://doi.org/10.1016/j.jss.2015.11.037
https://epub.wu.ac.at/id/eprint/7367

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

