
Deriving Role Engineering Artifacts from
Business Processes and Scenario Models

Anne Baumgrass, Mark Strembeck
Institute of Information Systems, New Media Lab

Vienna University of Economics and Business
(WU Vienna), Austria

{firstname.lastname}@wu.ac.at

Stefanie Rinderle-Ma
Workflow Systems and Technology

Faculty of Computer Science
University of Vienna, Austria

stefanie.rinderle-ma@univie.ac.at

ABSTRACT

Scenario-driven role engineering is a systematic approach to engi-
neer and maintain RBAC models. Such as every engineering pro-
cess, this approach heavily depends on human factors and many of
the corresponding engineering tasks must be conducted manually.
However, based on the experiences we gained from our projects
and case studies, we identified several tasks in role engineering that
are monotonous, time-consuming, and can get tedious if conducted
manually. These tasks include the derivation of candidate RBAC
artifacts from business processes and scenario models. In this pa-
per, we present an approach to automatically derive role engineer-
ing artifacts from process and scenario models. While our general
approach is independent from a specific document format, we es-
pecially discuss the derivation of role engineering artifacts from
UML activity models, UML interaction models, and BPMN col-
laboration models. In particular, we use the XMI (XML Metadata
Interchange) representation of these models as a tool- and vendor-
independent format to identify and automatically derive different
role engineering artifacts.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Access

Controls; K.6.5 [Management of Computing and Information

Systems]: Security and Protection

General Terms

Security

Keywords

Role Engineering, RBAC, UML, BPMN, XMI

1. INTRODUCTION
In recent years, role-based access control (RBAC) [8, 9, 22] –

together with various extensions – has developed into a de facto
standard for access control. In the context of RBAC, roles model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’11, June 15–17, 2011, Innsbruck, Austria.
Copyright 2011 ACM 978-1-4503-0688-1/11/06 ...$10.00.

different job-positions and scopes of duty within a particular orga-
nization or within an information system. Scenario-driven role en-

gineering is a systematic approach for defining customized RBAC
models, including roles, role-hierarchies, permissions, and con-
straints [23, 24, 26]. Since its first publication in 2002 [18], we
gained many experiences with scenario-driven role engineering and
the approach has been adopted by a number of consulting firms and
international projects (see, e.g., [5, 15]).

1.1 Scenario-driven Role Engineering
In scenario-driven role engineering, we use scenario and pro-

cess models as a primary communication and engineering vehicle.
We model usage scenarios of an information system and use the
respective scenario and process models to derive permissions. In
general, a scenario describes a possible or actual action and event
sequence (see, e.g., [13]). Thus, to perform a certain scenario, a
subject needs to be equipped with the exact number of permissions
that are needed to complete each step of the respective scenario.
After deriving the permissions, we therefore group the scenarios
to form tasks and work profiles. These work profiles serve as pre-
liminary roles and are an important step toward the definition of a
customized RBAC model (for details see [18, 23, 24, 26]). Figure
1 shows the main relations between role engineering artifacts and
corresponding RBAC model artifacts.

*

*

** *

* 1..* *

juniorRoleseniorRole

RoleSubject
owner role permissionowner

mutualExclusive

1..*

0..* *

mutualExclusive

0..*

Scenario

Task Work Profile

Step

1..*

1..*

1

0..1source

Permission

1..*

source 1..*

0..*performs performs

RBAC model artifacts

Role engineering artifacts

** derived from derived from

*

*

*

Figure 1: Role engineering and RBAC artifacts [24]

Such as every engineering process, the process of role engineer-
ing significantly depends on human factors. For this reason, many
steps of the process cannot be automated (or at most partially).
However, based on the experiences we gained from our role engi-
neering projects and case studies (see Section 4), we identified sev-
eral tasks in role engineering that are monotonous, time-consuming
and can get tedious if conducted manually. These tasks include the
derivation of candidate RBAC artifacts from scenario and process

models. In this paper, we are especially concerned with the deriva-
tion of role engineering artifacts from UML activity, UML interac-
tion, and BPMN collaboration models.

1.2 Approach Synopsis
In order to ease scenario-driven role engineering, we aim to au-

tomate the derivation of role engineering artifacts from different
types of scenario and process descriptions. In general, scenario and
process models can be defined in a wide variety of (modeling) lan-
guages, such as Unified Modeling Language (UML) activity and
interaction models, event-driven process chains (EPCs), Business
Process Model and Notation (BPMN) models, or via the Business
Process Execution Language (BPEL). To automate the derivation
of role engineering artifacts, we therefore chose an approach that is
independent of the language which is used to define the scenarios
and processes. In particular, we first assess the respective (model-
ing) language and specify a mapping between modeling language
artifacts and role engineering artifacts. This mapping especially
results in an integrated meta-model (see Figure 2). Based on this
integrated meta-model we built a tailored analyzer component that
extracts role engineering artifacts from corresponding scenario and
process models.

generated

from

based on

Role engineering

meta model

Integrated

meta model

Machine-readable

format

based on

based on

Modeling language

meta model

Model

(meta model instance)

based on
derive

parse

Model (instance) level

Meta model level Software platform

Analyzer

component

Candidate

Role engineering

artifacts

Figure 2: Generic approach for the automated derivation of

role engineering artifacts from scenario and process models:

conceptual overview

Thereby, our approach is independent of a certain modeling lan-
guage or format. However, a detailed and dedicated investigation
of different modeling languages is essential since modeling lan-
guage meta models partly differ with respect to the representation
of relevant artifacts (see Sections 2 and 3).

In this paper, we describe the derivation of role engineering arti-
facts from UML activity and interaction models as well as BPMN
collaboration models. In particular, we use the XML Metadata In-
terchange (XMI) [20] representation of these models as a tool- and
vendor-independent format to identify and derive different candi-
date role engineering artifacts.

The remainder of this paper is structured as follows. In Section
2, we give an overview of the different UML and BPMN models,
and show how we use them for scenario and process modeling in
the role engineering context. Subsequently, Section 3 presents our
approach for the automated derivation of role engineering artifacts
from the corresponding scenario and process models. Next, Section
4 discusses the practical relevance of our approach. Section 5 gives
an overview of related work, and Section 6 concludes the paper.

2. USING UML AND BPMN FOR SCENA-

RIO AND PROCESS MODELING
UML is a de facto standard for the definition of software-based

systems. In scenario-driven role engineering, we use UML activity

and interaction models as standard means to visualize scenario and
process models (see also [24]). Moreover, in recent years BPMN
emerged as a new standard for the definition of process models that
was quickly adopted in both research and industry.

2.1 UML Activity Models
Activity models specify processes and define the control and ob-

ject flow between different actions. Figure 3 shows an excerpt of
the UML2 meta-model that depicts selected elements of activity
models (see [21]). In Section 3.1, we will use some of these activ-
ity elements to derive role engineering artifacts.

0..1

+activity

+node * +partition

+inPartition

+edge*

*

+edge*

0..1

*

+activity

0..1

+inPartition

*+node

*

+target1 +incoming *

+source

1

+outgoing

*

0..10..1

+ /input

+ /output

*

*
Pin

ObjectNode

Activity

Partition

InputPin

OutputPin

Action

ActivityNode

Activity

ActivityEdge

ActivityParameterNode

ControlFlowObjectFlow

Figure 3: Selected elements of UML2 activity models

The left-hand side of Figure 4 shows the example of a simple
credit application process modeled as UML activity diagram. An
activity model may include (sub)partitions, and each partition may
have a name. Partitions can be used to group actions that have
common characteristics, for example the execution of all actions
in a partition by the same actor. The example from Figure 4 in-
cludes three partitions using the so called swimlane notation (see
[21]), the partitions are named "Credit Application Web-Frontend",
"Bank Clerk A", and "Bank Clerk B".

Activity models have a token semantics, similar (but not equal)
to petri nets. In general, two different types of tokens can travel
in an activity model. Control tokens are passed along control flow
edges and object tokens are passed along object flow edges (for
details see [21]). To model object flows between actions, one uses
corresponding object nodes. Pins are a specific type of object node
and are visualized as small rectangles that are attached to action
symbols. For example, in Figure 4 we have an object flow between
the two actions "Negotiate contract" and "Approve contract". The
object flow connects the two pins attached to the respective actions
and accepts object tokens of type "Contract".

Each edge may be associated with a so called "guard" condition.
The guard determines if a particular token is allowed to travel along
the respective edge. A decision node is represented by a diamond-
shaped symbol and has one incoming and multiple outgoing edges.
A merge node is represented by a diamond-shaped symbol and has
multiple incoming and one outgoing edge.

The right-hand side of Figure 4 shows an excerpt of the XMI rep-
resentation of the activity model depicted on the left-hand side. The
XML Metadata Interchange (XMI) specification (see [20]) defines
an interchange and storage format and (among other things) allows
for the transformation of graphical UML models to a generic (tool-
and vendor-independent) model representation. Each element in an
XMI document has an identifier defined through the xmi:id at-
tribute. Via this identifier elements can reference other elements
(see below). For demonstration purposes, Figure 4 highlights two

Credit

application

[else]

Credit application process

[Check passed]

[else] Contract

Contract

[approved]

[Form Ok]

[else]

Check credit
worthiness

Negotiate
contract

Approve
contract

C
re

d
it
 A

p
p
lic

a
ti
o
n

W
e
b
-F

ro
n
te

n
d

Reject
application

<?xml version="1.0" encoding="UTF-8"?>

<uml:Package xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

 xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="PA01">

 <packagedElement xmi:type="uml:Activity" xmi:id="AC01"

 name="Modified Credit application process">

 <node xmi:type="uml:ActivityParameterNode" xmi:id="PN01"

 name="Credit application" outgoing="OF01"/>

 ...

 <node xmi:type="uml:OpaqueAction" xmi:id="OA03" name="Negotiate contract"

 incoming="CF07" inPartition="AP01">

 <outputValue xmi:type="uml:OutputPin" xmi:id="OP01" name="Contract" outgoing="OF02"/>

 </node>

 <node xmi:type="uml:OpaqueAction"
 xmi:id="OA04" name="Approve contract"
 outgoing="CF11" inPartition="AP02">
 <inputValue xmi:type="uml:InputPin" xmi:id="IP02"
 name="Contract" incoming="OF02"/>
 </node>
 ...

 <edge xmi:type="uml:ObjectFlow" xmi:id="OF02" source="OP01" target="IP02"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="CF07" source="DN03" target="OA03"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="CF11" source="OA04" target="MN02"/>

 ...

 <group xmi:type="uml:ActivityPartition" xmi:id="AP01"
 name="Bank Clerk A"
 node="DN01 OA02 DN02 MN01 MN02 OA03"/>

 <group xmi:type="uml:ActivityPartition" xmi:id="AP02" name="Bank Clerk B" node="OA04 DN03"/>

 ...

 </packagedElement>

</uml:Package>

Credit
application

Check
application form

B
a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A

Figure 4: Example of an UML2 activity model and its XMI representation

areas of the activity model and the corresponding XMI representa-
tion, in particular:

• In the XMI representation, activity partitions are defined via a
group element with the xmi:type attribute set to uml:Activ-
ityPartition. Nodes/elements included in a partition are ref-
erenced via the node attribute. For example, in Figure 4 the
partition with name "Bank Clerk A" includes the nodes DN01,
OA02, DN02, MN01, MN02, and OA031.

• Actions are defined as node of the activity model and include an
xmi:type attribute that specifies the corresponding action type.
The action highlighted on the right-hand side of Figure 4 is of
type uml:OpaqueAction and has the name "Approve contract".
The inPartition attribute references the id of the activity par-
tition that includes the respective action (see also Figure 3). In
this example, the "Approve contract" action is included in parti-
tion AP02 (short for "Activity Partition 02") named "Bank Clerk
B". Moreover, this action is connected to an InputPin that has
the name "Contract".

• Input pins as well as output pins (see Figure 3) are defined as
subelements of the action they are attached to. Input pins are in-
cluded in an inputValue element and their xmi:type is set
to uml:InputPin (see Figure 4). Likewise, output pins are
outputValue elements of the type uml:OutputPin.

2.2 Refining/Concretizing ActivityModels via
Interaction Models

While activity models describe the control flows and object flows
between different actions on a higher abstraction level, interaction
models are used to define the interactions of different actors in de-
tail. Figure 5 shows an excerpt of the UML2 meta-model that de-
picts selected elements of interaction models (see [21]). In Section
3.1, we will use some of these interaction elements to derive role
engineering artifacts.

In particular, interaction models describe a sequence of messages
that are send between different lifelines. Here, a lifeline represents
an actor that is participating in a particular interaction. In general,
an actor may be a human user or a technical (software-based) sys-
tem. UML includes different (sub)types of interaction models (see
[21]). In scenario-driven role engineering, we especially use UML
sequence diagrams to model interactions and to specify the actions
modeled in an activity model in detail (see also [24]). The right-
hand side of Figure 6 shows an example of a sequence diagram

1DN = Decision Node, MN = Merge Node, OA = Opaque Action

+ receive
Event

+ sendEvent

1 +interaction

+enclosingInteraction

* +message * +lifeline

+covered

+coveredBy

+finish

1

+start

*

*

0..1 0..1

0..1 0..1

0..2

0..1+message

*

*

+fragment*

0..1

1

1 +covered

*

1 +interaction

MessageOccurrence

Specification

Message

End

Message Lifeline

Interaction

Interaction

Fragment

Occurence

Specification

Execution

Specification

Figure 5: Selected elements of UML2 interaction models

which describes the "Check credit worthiness" action from Figure
4 in detail.

The Interaction from Figure 6 includes three lifelines, represent-
ing a "Bank Clerk", a (sub)system called "CustomerMgmt" and a
(sub)system called "CustomerRating". Each message send between
the lifelines defines a particular act of communication and is mod-
eled via a directed edge pointing from the message sender’s lifeline
to the message receiver’s lifeline. In UML, the start and end of
the directed edges representing a message are called MessageEnds
and define a so called MessageOccurrenceSpecification (see Fig-
ure 5), i.e. the occurrence of a respective send or a receive event on
the corresponding lifeline. Asynchronous messages have an open
arrow head, synchronous messages have a filled arrow head, and
reply messages are drawn as a dashed line with an open arrow head
(see Figure 6). Moreover, so called "execution specifications" spec-
ify the execution of a certain behavior or command within a life-
line (i.e. the execution of a behavior by the corresponding actor).
ExecutionSpecifications are represented by thin rectangles on the
lifeline, and may be nested/overlapping. Thus, execution specifica-
tions define when an actor (represented via a lifeline) is busy.

Moreover, interaction models may include CombinedFragments.
A combined fragment models an interaction fragment which oc-
curs in case a certain condition becomes true. In general, different
types of CombinedFragments exist, e.g. to model alternative behav-
iors, optional behavior, loops, or breaking scenarios (for details see
[21]). The example from Figure 6 includes a CombinedFragment
modeling an optional behavior (indicated by the "opt" operator in
the upper left corner of the fragment) that is executed if the "[deci-
sion is positive]" condition in the CombinedFragment evaluates to
true.

sd Check credit worthiness

: CustomerMgmt : CustomerRatingBank Clerk

getCustomerProfile(id)

profileLookup(id)

profilereturn profile

assess profile

make decision

[decision is positive]opt

getCustomerRating(id)

assembleRating(id)

ratingreturn rating chart

assess rating chart

make decision

decision

<?xml version="1.0" encoding="UTF-8"?>

<uml:Package xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

 xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="PA02">

 <packagedElement xmi:type="uml:Interaction" xmi:id="IA01" name="Check credit worthiness">

 <lifeline xmi:type="uml:Lifeline" xmi:id="LL01"
 name="Bank Clerk" coveredBy="MO01 MO07
 MO09 ..."/>

 <lifeline xmi:type="uml:Lifeline" xmi:id="LL02"
 name=": CustomerMgmt" coveredBy="MO03 MO02
 MO04 MO06 MO05 MO08 BE01 BE03 BE04"/>
 ...

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO01" covered="LL02"

 message="ME01"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO02" covered="LL01"

 message="ME01"/>

 ...

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE03" covered="LL02"

 start="MO04" finish="MO05"/>

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE04" covered="LL02"

 start="MO03" finish="MO06"/>

 ...

 <message xmi:type="uml:Message" xmi:id=
 "ME01" name="getCustomerProfile(id)"
 messageSort="asynchCall" receiveEvent="MO02"
 sendEvent="MO01"/>

 <message xmi:type="uml:Message" xmi:id="ME02" name="profileLookup(id)" receiveEvent="MO03"

 sendEvent="MO04"/>

 ...

 </packagedElement>

</uml:Package>

Credit

application

[else]

Credit application process

[Check passed]

[else] Contract

Contract

[approved]

[Form Ok]

[else]

Check credit

worthiness

Negotiate

contract

Approve contract

C
re

di
t A

pp
lic

at
io

n
W

eb
-F

ro
nt

en
d

Credit

application

Reject

application

Check

application form

B
an

k
C

le
rk

 B
B

an
k

C
le

rk
 A

Credit application process

Figure 6: Example of an UML2 interaction model and its XMI representation

The left-hand side of Figure 6 shows an excerpt of the XMI rep-
resentation of the interaction model depicted on the right-hand side.
For demonstration purposes, Figure 6 highlights three areas of the
interaction model and the corresponding XMI representation. In
particular, the highlighted areas include the following elements:

• In the XMI representation, lifelines are defined via a life-

line element with the respective xmi:type attribute set to
uml:Lifeline. Moreover, each lifeline includes a coveredBy
attribute which contains id-references to the occurrence speci-
fications of this particular lifeline. In the topmost highlighted
area from Figure 6, the lifeline with name "Bank Clerk" is
covered by a number of message occurrences ("MO01, MO07,
MO09, . . . ")2.

• A Message is defined via a message element with the corre-
sponding xmi:type attribute set to uml:Message. Moreover,
the sendEvent and receiveEvent attributes refer to the re-
spective MessageOccurrenceSpecifications (see also Figure 5)
that define the start and end points of a certain message. In the
example from Figure 6, the message with name "getCustomer-
Profile(id)" connects the sendEvent "MO01" (which is covered
by the lifeline "Bank Clerk") and the receiveEvent "MO02"
(which is covered by the lifeline "CustomerMgmt").

2.3 BPMN Collaboration Models
BPMN2 provides three diagram types named Process, Col-

laboration, and Choreography respectively (for details see [19]).
For our purposes, we especially focus on BPMN collaboration
diagrams which model interactions between different entities (so
called Participants).

Figure 7 shows an excerpt of the BPMNmeta-model that depicts
selected elements of BPMN collaboration models. In Section 3.2
we will use some of these elements to derive role engineering arti-
facts. Figure 8 shows an example of a descriptive BPMN model.

In a collaboration a participant is responsible for the execution of
the process enclosed in a so called pool. In BPMN processes group
the flow or sequence of different process steps. The steps within
a process are categorized and organized via Lanes encapsulated by
a LaneSet, whereas each lane can consist of sub-lanes to further
partition the included process steps (for details see [19]). In version
2.0, BPMN introduces process modeling conformance classes to
simplify the interchange between modelers and developers [19].
Below, we use the descriptive conformance class. The Descriptive
Conformance class allows to establish a high-level understanding
between modelers. The Common Executable Conformance class
enables a detailed definition of the corresponding processes.

2MO = Message Occurrence

FlowElement

DataAssociation

+targetRef

1

1

0..1

1..*1

* *

+sourceRef

*

*

0..1

0..1

0..1

0..1

*

*
*

*
**

*

*

*

*

0..1

1

11

1

*

*

1

1

*

0..1

*

**

+targetRef

+sourceRef

+incoming+outgoing

+participantRef

+participantRef

+partnerRoleRef +partnerEntityRef

+participants

+dataOutputs

+dataInputs

* *

0..10..1

+dataOutputAssociations+dataInputAssociations

+ioSpecification

0..1

+process

+resources

+resources

*

+participant

+processRef

1 +collaboration

+collaboration+messageFlows

+targetRef+sourceRef

+flowElements

+container

+flowElementContainer

+laneSets
+childLaneSet

+parentLane

+/lanes

+flowNodesRef

*

+lanes
1 +laneSet

+resourceRef

0..1 *

0..1

*

+messageRef

+messageFlow

1..*

1..*

+outputSets

+/outputSetRefs

1

+dataOutputRefs

*

1

1..*

1..*+inputSets

+/inputSetRefs

*

+dataInputRefs

ItemAwareElement

FlowElement

Container

LaneSet

Lane

DataOutput

Association

DataInput

Association

SequenceFlow

FlowNode

InputOutput

Specification

DataInput

InputSet

DataObject

Event Gateway Activity

SubProcess Task

DataOutput

OutputSet

Resource

RoleResource

PartnerEntityPartnerRole

Participant ProcessInteractionNode

CollaborationMessageFlow

Message

Figure 7: Selected elements of BPMN 2.0 collaboration models

Figure 8 shows our credit application example modeled via a
BPMN model using the descriptive conformance class. It includes
one Pool named "Bank Company" consisting of the three lanes
named "Credit Application Web-Frontend", "Bank Clerk A", and
"Bank Clerk B".

While BPMN tasks are atomic process steps, subprocesses can
be broken down to a finer level of detail. In Figure 8, the process
step "Check credit worthiness" represents a collapsed subprocess,
while all other steps in this figure are tasks. The control flow in a
process is defined via events and gateways. Gateways coordinate
the direction and choices of the process flow, while events can di-
rectly affect this flow. Our example process shows five exclusive
Gateways (diamonds), a Start Event (circle) to indicate where to
begin the process and a End Event (circle with thick line) to indi-
cate where the path of the process will end. So called Data Objects
are used to store and convey items during process execution. Data
Associations model how data is extracted from a data object into a

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:xmi="http://schema.omg.org/spec/XMI" xmlns:bpmnxmi="http://www.omg.org/spec/BPMN/20100524/MODEL-XMI" xmi:version="2.0">

 <bpmnxmi:Definitions id="DEF01" targetNamespace="http://www.omg.org/bpmn20" expressionLanguage="http://www.w3.org/1999/XPath" typeLanguage="http://www.w3.org/2001/XMLSchema">

 <rootElements xmi:type="bpmnxmi:Process" name="Credit Application Process" id="PR01">

 ...

 <laneSets xmi:type="bpmnxmi:LaneSet" id="LS01" name="Bank">

 <lanes xmi:type="bpmnxmi:Lane" id="LA01" name="Credit Application Web-Frontend" flowNodeRefs="SE01 EE01 TA01 TA04 TA05 "/>

 <lanes xmi:type="bpmnxmi:Lane" id="LA02" name="Bank Clerk A"
 flowNodeRefs="EG01 EG02 EG03 EG04 EG05 SP01 TA02"/>
 <lanes xmi:type="bpmnxmi:Lane" id="LA03" name="Bank Clerk B" flowNodeRefs="TA03 "/>

 </laneSets>

 <flowElements xmi:type="bpmnxmi:DataObject" name="Credit application" id="DO01" isCollection="false"/>

 <flowElements xmi:type="bpmnxmi:EndEvent" id="EE01" name="" incoming="SF14 SF15"/>

 <flowElements xmi:type="bpmnxmi:ExclusiveGateway" id="EG01" name="Form Ok?" outgoing="SF03 SF04 " incoming="SF02" gatewayDirection="Diverging" default="SF04"/>

 <flowElements xmi:type="bpmnxmi:DataObject" isCollection="false" name="Contract" id="DO02"/>

 <flowElements xmi:type="bpmnxmi:Task" outgoing="SF09" incoming="SF08" startQuantity="1"
 isForCompensation="false" name="Negotiate contract" id="TA02" completionQuantity="1">
 <dataOutputAssociations xmi:type="bpmnxmi:DataOutputAssociation" targetRef="DO02"
 id="DOA02" sourceRef="Out02" />
 <ioSpecification xmi:type="bpmnxmi:InputOutputSpecification" id="IOS02">

 <inputSets xmi:type="bpmnxmi:InputSet" id="IS02"/>

 <outputSets xmi:type="bpmnxmi:OutputSet" id="OS02" dataOutputRefs="Out02"/>

 <dataOutputs xmi:type="bpmnxmi:DataOutput" id="Out02" name="Output Negotiate contract"
 isCollection="false"/>
 </ioSpecification>

 </flowElements>
 <flowElements xmi:type="bpmnxmi:Task" id="TA03" name="Approve contract" outgoing="SF10 " incoming="SF09" isForCompensation="false" startQuantity="1" completionQuantity="1">

 <ioSpecification xmi:type="bpmnxmi:InputOutputSpecification" id="IOS03">

 <inputSets xmi:type="bpmnxmi:InputSet" id="IS03" dataInputRefs="In03"/>

 <outputSets xmi:type="bpmnxmi:OutputSet" id="OS03"/>

 <dataInputs xmi:type="bpmnxmi:DataInput" id="In03" name="Input Approve contract" isCollection="false"/>

 </ioSpecification>

 <dataInputAssociations xmi:type="bpmnxmi:DataInputAssociation" id="DIA03" targetRef="In03" sourceRef="DO02"/>

 </flowElements>

 </rootElements>

 </bpmnxmi:Definitions>

</xmi:XMI>

Check
application

form

Check credit
worthiness

Reject
application

Approve
contract

B
a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A
C

re
d
it
 A

p
p
lic

a
ti
o
n

W
e
b
-F

ro
n
te

n
d

B
a

n
k Form Ok Negotiate

contract

Check passed approved

Contract

Credit

application

Figure 8: Example of a BPMN 2.0 collaboration model in descriptive conformance class and its XMI representation

task. In particular, this is done via the DataInput included in a task’s
InputSet. Similarly, a newly created data object is extracted from a
task’s DataOutput in the respective OutputSet (see also Figure 7).
In our example the data object "Credit application" is connected to
the task "Check application form" via a Data Input Association. A
data object that is passed from one task to another can be attached
directly to the sequence flow connecting these tasks. In Figure 8,
this visualization option is shown for the data object "Contract".

The right-hand side of Figure 8 shows an excerpt of the XMI
representation of the BPMN 2.0 collaboration model depicted on
the left-hand side3.

For demonstration purposes, Figure 8 highlights three areas of
the BPMN model and the corresponding XMI representation. In
particular, the highlighted areas include the following elements:

• Lanes partitioning the process are defined via lanes elements
with the xmi:type attribute set to bpmnxmi:Lane. Each flow
node that belongs to this lane is referenced by its id in the flow-
NodeRefs attribute. For example, the lane named "Bank Clerk
A" includes the flow nodes EG01, EG02, EG03, EG04, EG05,
SP01, TA024.

• Data Objects are defined as flowElementswith the xmi:type
attribute set to bpmnxmi:DataObject. Figure 8 shows the XMI
representation of the data object "Contract".

• Elements describing the flow in a process are also defined as
flowElements. These elements are flow nodes and sequence
flows (see also Figure 7). Figure 8 shows the XMI representation
of the "Negotiate contract" task as flowElements element of
the type bpmnxmi:Task.

• Data associations between data objects and tasks are defined as
subelement of a task. They are either defined as dataOutput-
Associations or dataInputAssociations. Figure 8 shows
that the "Contract" data object is related to "Negotiate contract"
as output and to "Approve contract" as input. In Figure 8 the
"Contract" data object is referenced via its id "DO02" (short for
"Data Object 02") in the dataOutputAssociations element
of the "Negotiate contract" task.

3The transformation to XMI from BPMN is conducted via a XSLT
document that is provided as part of BPMN specification (see [19]).
4EG=Exclusive Gateway, SP=Sub-Process, TA=Task

3. DERIVING ROLE ENGINEERING AR-

TIFACTS FROM PROCESS AND SCE-

NARIO MODELS
In this section, we show how we derive role engineering artifacts

from the XML Metadata Interchange (XMI) [20] representation of
UML activity, UML interaction, and BPMN collaboration models.

However, note that the role engineering artifacts derived from
the XMI documents are only candidate artifacts and are subject to
a subsequent selection and/or refinement performed by human role
engineers. This means that after the role engineering artifacts are
fed into the role engineering tool they can be renamed or deleted
(see, e.g., [23]). For example, a certain candidate artifact can be
deleted if two different artifacts refer to the same role engineering
entity, as it may be the case with two candidate roles "Bank Clerk
A" and "Bank Clerk B" which will most likely refer to a single role
called "Bank Clerk".

refine/

concretize

generated

from

Modeling tool

Parser

DOM Engine

XML Processor

DOM Tree

access

Generator

use

Runtime model

manage

use

generate

Role engineering

tool

XMI Analyzer

XMI representation

Scenario/Process

model R
o

le
 e

n
g

in
e

e
rin

g
 to

o
l

Figure 9: Deriving role engineering artifacts from scena-

rio/process models: Structural overview

In particular, a special-purpose XMI Analyzer component trans-
forms XMI model representations to candidate role engineering ar-
tifacts. Figure 9 depicts a structural overview of this XMI Analyzer
while Figure 10 depicts the different steps of this transformation.

The XMI Analyzer uses a XML processor to parse the respec-
tive XML document and generate a corresponding DOM tree (see
[2, 11, 12]). The DOM tree is an in-memory representation of the
respective XML document and makes the corresponding document
content accessible to software components. The Generator com-
ponent then accesses the DOM tree to derive/extract role engineer-
ing artifacts and feeds them into a role engineering tool (such as
the xoRET tool [23]). In turn, the role engineering tool produces
a corresponding runtime model and provides an interface for hu-
man users (role engineers) to further manipulate/refine the respec-
tive role engineering artifacts and to build a tailored RBAC model
(see also [23, 24]).

Scenario catalog

Scenario catalog

XMI documents

XMI documents

DOM Tree RE artifacts

RE artifacts

Assignment

relations

Constraint

catalog

Permission

catalog

Role

catalog

DOM Tree

RE artifacts

RE artifacts

[change runtime model]

M
o

d
e
li
n

g
 t

o
o

l
X

M
I
A

n
a
ly

z
e
r

Role engineering tool

Scenario

catalog

DOM Tree
DOM Tree

Model (new)

scenarios

Generate XMI

representation

Generate

DOM Tree

Derive role engineering

artifacts

Derive role engineering

artifact relations

Define customized

RBAC model

Figure 10: Deriving role engineering artifacts from scena-

rio/process models: Task sequence

Table 1 gives an overview what role engineering artifacts can
be derived from the XMI representation of UML2 and BPMN 2.0
models. The details of this derivation are described in the following
sections.

Table 1: Model elements to derive role engineering artifacts

from UML2 and BPMN 2.0 models in XMI representation

xmi:Type attribute Role engineering artifacts

UML Activity
Diagram

ActivityPartition Candidate ROLE

OpaqueAction Candidate PERMISSION and
Candidate OPERATION

OutputPin Candidate OBJECT

InputPin Candidate OBJECT

UML Interaction
Diagram

Lifeline Candidate ROLE or
Candidate OBJECT

Message Candidate PERMISSION and
Candidate OPERATION

BPMN
Descriptive
Collaboration
Model

Lane Candidate ROLE

Participant Candidate ROLE

Task Candidate PERMISSION and
Candidate OPERATION

DataObject Candidate OBJECT

Message Candidate OBJECT

BPMN Common
Executable
Collaboration
Model

Resource Candidate ROLE

PartnerEntity Candidate ROLE

PartnerRole Candidate ROLE

Task with
implementation attribute

Candidate OBJECT

3.1 Deriving Role Engineering Artifacts from
UML Models

Figure 11 shows the integrated meta-model for the derivation of
role engineering artifacts from UML activity and interaction mod-
els. In particular, it indicates which UML model elements are used
to derive corresponding role engineering artifacts: In a nutshell, we
use ActivityPartitions and Lifelines to identify candidate roles, Pins
and Lifelines to identify candidate objects, as well as Actions and
Messages to identify candidate operations.

3.1.1 Derivation from Activity Models

Figure 12 shows an example of how we use the XMI represen-
tation of activity models to identify role engineering artifacts. In

*

*

R
o

le
 e

n
g

in
e

e
ri

n
g

a
rt

if
a

c
ts

A
c

ti
v

it
y

 m
o

d
e

l

a
rt

if
a

c
ts

In
te

ra
c

ti
o

n
 m

o
d

e
l

a
rt

if
a

c
ts describes

owner permission

1..* *

includes

0..1

*

1

0..*

**

*

*

0..*describes

derived from derived from

derived from

1

0..*

0..*

11

0..*

0..1

0..1

0..1 0..1
**

derived fromderived fromderived from

0..*

Candidate

Role

Candidate

Permission

Candidate

Object

Candidate

Operation

PinAction

Activity

Partition

Lifeline

Message

Figure 11: Derivation of role engineering artifacts from UML

activity and interaction models: Integrated meta-model

particular, Figure 12 highlights an excerpt of Figure 4 and shows
what role engineering artifacts can be derived from the correspond-
ing XMI representation. In general, the following derivation rules
are applied (see also Figures 2, 9, 10, and 11, as well as Table 1):

• We use group elements of the type uml:ActivityPartition
to identify candidate roles. These candidate roles are then as-
sociated with the candidate permissions that are derived from
actions included in the respective ActivityPartition. For exam-
ple, the activity partition with name "Bank Clerk B" is used to
derive a corresponding candidate role (see Figure 12).

• We use node elements of type uml:OpaqueAction to iden-
tify candidate operations. Moreover, the name of the respec-
tive action is also used to determine the name of the correspond-
ing permission candidate. In Figure 12, we can thus use the
uml:OpaqueAction with name "Approve contract" to derive
the corresponding artifacts.

• We use inputValue elements with the uml:InputPin type
and outputValue elements with the uml:OutputPin type
to identify candidate objects. The candidate objects are then
associated with the candidate operation that is identified from
the corresponding action defined as node element of type
uml:OpaqueAction (see also Figure 11). For instance, from
Figure 12 we can derive the "Contract" candidate object for
action "Approve contract" from the respective input pin.

In addition to the role engineering artifacts described above, we
can also derive candidate mutual exclusive constraints (ME) from
activity models. Mutual exclusive constraints enforce conflict of
interest policies (see, e.g., [1, 3, 7, 25]). Conflict of interest arises
as a result of the simultaneous assignment of two mutual exclu-
sive tasks or roles to the same subject. In general, we use group
elements of the type uml:ActivityPartition to identify candi-
date ME constraints. In particular, we assume that the actions in-
cluded in different activity partitions must be executed by different
actors. For instance, in the example from Figure 4 we can derive
a candidate ME constraint on the actions "Negotiate contract" and
"Approve contract". In the further course of the role engineering
process, we would further refine this candidate ME constraint into
a dynamic ME constraint on the corresponding permissions defined
for the "Bank Clerk" role. This means, each user assigned to the

Contract

Contract

Negotiate

contract

Approve

contract
B

a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A

Credit application process

Role engineering artifacts

Approve contract
(Candidate Permission)

Bank Clerk B
(Candidate Role)

Contract
(Candidate Object)

Approve contract
(Candidate Operation)

<?xml version="1.0" encoding="UTF-8"?>

<uml:Package xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

 xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="PA01">

 <packagedElement xmi:type="uml:Activity" xmi:id="AC01"

 name="Modified Credit application process">

 <node xmi:type="uml:ActivityParameterNode" xmi:id="PN01"

 name="Credit application" outgoing="OF01"/>

 ...

 <node xmi:type="uml:OpaqueAction" xmi:id="OA03" name="Negotiate contract"

 incoming="CF07" inPartition="AP01">

 <outputValue xmi:type="uml:OutputPin" xmi:id="OP01" name="Contract" outgoing="OF02"/>

 </node>

 <node xmi:type="uml:OpaqueAction"
 xmi:id="OA04" name="Approve contract"
 outgoing="CF11" inPartition="AP02">
 <inputValue xmi:type="uml:InputPin" xmi:id="IP02"
 name="Contract" incoming="OF02"/>
 </node>
 ...

 <edge xmi:type="uml:ObjectFlow" xmi:id="OF02" source="OP01" target="IP02"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="CF07" source="DN03" target="OA03"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="CF11" source="OA04" target="MN02"/>

 ...

 <group xmi:type="uml:ActivityPartition" xmi:id="AP01" name="Bank Clerk A"

 node="DN01 OA02 DN02 MN01 MN02 OA03"/>

 <group xmi:type="uml:ActivityPartition" xmi:id="AP02"
 name="Bank Clerk B" node="OA04 DN03"/>
 ...

 </packagedElement>

</uml:Package>

Credit

application

[else]

Credit application process

[Check passed]

[else] Contract

Contract

[approved]

[Form Ok]

[else]

Check credit

worthiness

Negotiate

contract

Approve contract

C
re

d
it
 A

p
p
lic

a
ti
o
n

W
e
b
-F

ro
n
te

n
d

Credit

application

Reject

application

Check

application form

B
a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A

Figure 12: Example for the derivation of role engineering artifacts from activity models

"Bank Clerk" role owns both permissions and can, in principle, per-
form both tasks. However, due to the dynamic ME constraint on the
respective permissions one always needs two different individuals
acting in the "Bank Clerk" role to complete the credit application
process (as it is reflected in the graphical model via two different
swimlanes labeled "Bank Clerk A" and "Bank Clerk B").

3.1.2 Derivation from Interaction Models

Figure 13 shows an example how we use the XMI representa-
tion of interaction models to identify role engineering artifacts. In
particular, Figure 13 highlights an excerpt of Figure 6 and shows
what role engineering artifacts can be derived from the respective
XMI representation. In general, the following derivation rules are
applied (see also Figures 2, 9, 10, and 11, as well as Table 1):

• We use message elements to identify candidate operations
and candidate permissions. Moreover, the receiveEvent

and sendEvent attributes are used to determine the respective
candidate object and the corresponding candidate role (see
below).

• We use lifeline elements to identity candidate roles and can-
didate objects:

– We derive a candidate role if one of the sendEvents cov-
ered by the respective lifeline is part of a messagewhich is
received by another lifeline. For instance, in Figure 13 the
sendEvent of the message with name "getCustomerPro-
file(id)" is covered by the "Bank Clerk" lifeline, while the
receiveEvent of this message is covered by the "Cus-
tomerMgmt" lifeline. Therefore, we derive a candidate
role from the "Bank Clerk" lifeline.

– We derive a candidate object if one of the receiveEvents
covered by a lifeline is part of an message element which
was sent by another lifeline. In the example from Figure
13, we therefore derive a candidate object from the "Cus-
tomerMgmt" lifeline, because it receives the "getCustom-
erProfile(id)" message from the "Bank Clerk" lifeline5.

5Note that a candidate role as well as a candidate object may be
derived from the very same lifeline in case the respective lifeline
is both a sender and a receiver of messages. However, this is per-
fectly in sync with the typical object/component-based nature of
today’s software systems where different objects/components are
connected and mutually invoke each others methods/procedures.

Because interaction models concretize and/or refine activity
models, they are a valuable source to identify role engineering
artifacts that cannot be derived from more abstract activity models.

3.2 Deriving Role Engineering Artifacts from
BPMN Collaboration Models

Figure 14 shows the integrated meta-model for the derivation of
role engineering artifacts from BPMN collaboration models. In
particular, it indicates what BPMN model elements are used to de-
rive corresponding role engineering artifacts: We use participants
and lanes to identify candidate roles. Tasks are used to identify
candidate operations, and Messages, Data Objects as well as the
implementation of a task are used to identify candidate objects. All
elements related to participants and lanes, such as resource, sub-
lanes, PartnerRole and PartnerEntity are used to further refine can-
didate roles and to identify candidate role-hierarchies.

Role engineering artifacts

BPMN model artifacts

Candidate Role

LaneSet

Task

DataObject

owner permission

1..* *

*

0..1

0..1
**

Participant

Lane

0..1

*

Process

0..*

executes

create/use/
manipulate

sends/receives

partitions

contains

contains

implements

Message

derived
from

derived
from

derived
from

derived
from

performs

Candidate Role hierarchy

performs

*

0..*

0..1

*

0..*

0..*

0..*

0..*

0..*

0..1

*

contains
*

*

*

*

*

0..1

0..1

*

sends/receives
*

*

*

Implementation

1

*

*

0..*

11 1

0..1

1 1 1 1 1 1

0..1

*

*

1

0..*

* *

representsrepresents

derived
from

* *0..1
containsPartnerEntity

PartnerRole

Candidate

Object

create/use/
manipulate

derived
from

Candidate

Permission

Candidate

Operation

Resource

Figure 14: Derivation of role engineering artifacts from BPMN

collaboration models: Integrated meta-model

: CustomerMgmt
Bank Clerk

getCustomerProfile(id)

profileLookup(id)

sd Check_credit_worthiness

: CustomerMgmt : CustomerRatingBank Clerk

getCustomerProfile(id)

profileLookup(id)

profilereturn profile

assess profile

make decision

[decision is positive]opt

getCustomerRating(id)

assembleRating(id)

ratingreturn rating chart

assess rating chart

make decision

decision

Check Credit Worthiness

<?xml version="1.0" encoding="UTF-8"?>

<uml:Package xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1" xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="PA02">

 <packagedElement xmi:type="uml:Interaction" xmi:id="IA01" name="Check credit worthiness">

 <lifeline xmi:type="uml:Lifeline" xmi:id="LL01" name="Bank Clerk"
 coveredBy="MO01 MO07 MO09 ..."/>
 <lifeline xmi:type="uml:Lifeline" xmi:id="LL02" name=": CustomerMgmt"
 coveredBy="MO03 MO04 MO05 MO06 MO08 BE01 BE03 BE04 MO02"/>
 ...

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO01" covered="LL02" message="ME01"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO02" covered="LL01" message="ME01"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO03" covered="LL02" message="ME02"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO04" covered="LL02" message="ME02"/>

 ...

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE01" covered="LL02" start="MO01" finish="MO08"/>

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE02" covered="LL01" start="MO02" finish="MO26"/>

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE03" covered="LL02" start="MO04" finish="MO05"/>

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE04" covered="LL02" start="MO03" finish="MO06"/>

 ...

 <message xmi:type="uml:Message" messageSort="asynchCall" xmi:id="ME01"
 name="getCustomerProfile(id)" sendEvent="MO01" receiveEvent="MO02"/>
 <message xmi:type="uml:Message" xmi:id="ME02" name="profileLookup(id)" receiveEvent="MO03" sendEvent="MO04"/>

 </packagedElement>

</uml:Package>

Role engineering artifacts

getCustomerProfile(id)
(Candidate Operation)

CustomerMgmt
(Candidate Object)

Bank Clerk
(Candidate Role)

getCustomerProfile(id)
(Candidate Permission)

Figure 13: Example for the derivation of role engineering artifacts from interaction models

Role engineering artifacts

Negotiate contract
(Candidate Operation)

Contract
(Candidate Object)

Bank Clerk A
(Candidate Role)

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:xmi="http://schema.omg.org/spec/XMI"

 xmlns:bpmnxmi="http://www.omg.org/spec/BPMN/20100524/MODEL-XMI" xmi:version="2.0">

 <bpmnxmi:Definitions id="DEF01" targetNamespace="http://www.omg.org/bpmn20" expressionLanguage="http://www.w3.org/1999/XPath"

 typeLanguage="http://www.w3.org/2001/XMLSchema">

 <rootElements xmi:type="bpmnxmi:Process" id="PR01" name="Credit Application Process">

 ...

 <laneSets xmi:type="bpmnxmi:LaneSet" id="LS01" name="Bank">

 <lanes xmi:type="bpmnxmi:Lane" id="LA01" name="Credit Application Web-Frontend" flowNodeRefs="SE01 EE01 TA01 TA04 TA05 "/>

 <lanes xmi:type="bpmnxmi:Lane" id="LA02" name="Bank Clerk A"
 flowNodeRefs="EG02 SP01 EG03 EG04 EG05 EG01 TA02"/>
 <lanes xmi:type="bpmnxmi:Lane" id="LA03" name="Bank Clerk B" flowNodeRefs="TA03 "/>

 </laneSets>

 <flowElements xmi:type="bpmnxmi:DataObject"
 id="DO02" name="Contract" isCollection="false"/>

 <flowElements xmi:type="bpmnxmi:Task" outgoing="SF09"
 isForCompensation="false" name="Negotiate contract" id="TA02"
 incoming="SF08" startQuantity="1" completionQuantity="1">
 <dataOutputAssociations xmi:type="bpmnxmi:DataOutputAssociation"
 targetRef="DO02" id="DOA02" sourceRef="Out02" />
 <ioSpecification xmi:type="bpmnxmi:InputOutputSpecification" id="IOS02">

 <inputSets xmi:type="bpmnxmi:InputSet" id="IS02"/>

 <outputSets xmi:type="bpmnxmi:OutputSet" id="OS02" dataOutputRefs="Out02"/>

 <dataOutputs xmi:type="bpmnxmi:DataOutput" id="Out02" name="Output Negotiate contract" isCollection="false"/>

 </ioSpecification>

 </flowElements>
 <flowElements xmi:type="bpmnxmi:Task" id="TA03" name="Approve contract" outgoing="SF10 " incoming="SF09"

 isForCompensation="false" startQuantity="1" completionQuantity="1">...</flowElements>

 </rootElements>

 </bpmnxmi:Definitions>

</xmi:XMI>

Approve
contract

B
a

n
k
 C

le
rk

 B
B

a
n

k
 C

le
rk

 A

B
a

n
k

Negotiate
contract

Contract

Check

application

form

Check credit

worthiness

Reject

application

Approve

contract

Approve

application

B
a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A
C

re
d
it
 A

p
p
lic

a
ti
o
n

W
e
b
-F

ro
n
te

n
d

B
a
n
k

Form Ok Negotiate

contract

Check passed
approved

Contract

Credit
application

Negotiate contract
(Candidate Permission)

Credit application process

Figure 15: Example for the derivation of role engineering artifacts from collaboration models in descriptive conformance class

Figure 15 shows an example of how we identify role engineer-
ing artifacts from the XMI representation of BPMN collaboration
models in the descriptive conformance class. In particular, Figure
15 highlights an excerpt of Figure 8 and shows what role engineer-
ing artifacts can be derived from the corresponding XMI represen-
tation. In general, the following derivation rules are applied (see
also Figures 2, 9, 10, and 14, as well as Table 1):

• We use lanes elements to derive candidate roles. Tasks, in-
cluding their input and output, are used to derive corresponding
candidate permissions. For example, the "Bank Clerk A" lane
shown in Figure 15 results in such a candidate role.

• We use flowElements of the type bpmnxmi:Task to derive
candidate operations. Moreover, the name of the respective task
element is also used to determine the name of the correspond-
ing permission candidate. For example, in Figure 15 we see the
"Negotiate contract" candidate permission and candidate opera-
tion.

• We use flowElements of the bpmnxmi:DataObject type to
derive candidate objects. We use the data associations (either
bpmnxmi:DataOutputAssociation or bpmnxmi:Data-

InputAssociation) of a data object to associate the candidate
objects with the corresponding candidate permission. In the
example, we can derive the candidate object "Contract" for the
candidate permission "Negotiate contract" (see Figure 15).

Similar to UML activity models (see Section 3.1), we can also
derive candidate mutual exclusion constraints (ME) from BPMN
collaboration models. In BPMNmodels, we use the lanes element
to identify candidate ME constraints. In particular, we assume that

the tasks included in different lanes have to be executed by different
actors. In the example from Figure 8 we can derive such a candidate
ME constraint for the "Negotiate contract" and "Approve contract"
tasks.

In general, the derivation rules presented above are valid for
BPMN collaboration models of all conformance classes. Moreover,
models in the common executable conformance class are more de-
tailed and can further concretize a BPMN collaboration model.
Thereby, these more detailed models can be used to further refine
the automated derivation of role engineering artifacts, similar to
the refinement of activity models via interaction models discussed
in Section 3.1. Due to the page restrictions, we had to cut the
derivation rules and examples for BPMN models in the common
executable conformance class from the paper. On our webpage, we
provide an extended version of this paper where we re-inserted the
text we had to cut from the paper.

4. PRACTICAL RELEVANCE AND DIS-

CUSSION
Since its first publication in June 2002, numerous consulting

firms and international projects have adopted the scenario-driven
role-engineering process. The most visible of which is probably
the Health Level 7 (HL7) role-engineering process defined by the
US National Healthcare RBAC Task Force (see [5]). Among other
things, the task force applied this process to produce HL7 RBAC
healthcare scenarios and a HL7 RBAC healthcare permission cat-
alog. In addition to such international projects, we are continu-
ously conducting role engineering projects and gained many expe-
riences in this area (see, e.g., [15, 18, 23, 24]). For example, in
2008 we conducted a role engineering project with the Austrian

Federal Ministry of Finance6, in 2009 we conducted a correspond-
ing case study with the German branch of ABB7, in 2009/10 we
were involved in a rights management project with Ernst & Young8,
and currently we are conducting a role engineering project with the
Vienna City Municipality9. In each of these (as well as in other)
projects we received requests for an extended automation support
of different role engineering tasks. In particular, these requests re-
vealed the demand for an automation support of the monotonous
derivation of role engineering artifacts from scenario and process
models.

The automatically derived candidate artifacts serve as input for
the definition of a customized RBAC model for the respective or-
ganization or information system. However, note that the candi-
date artifacts are subject to a subsequent selection and refinement
by human role engineers and domain experts. This is because an
automated derivation is well-suited to derive a first version of the
respective candidate artifacts, yet it cannot produce a set of tai-
lored, integrated, and non-redundant role engineering artifacts. For
example, the subsequent refinement aims to identify redundancies
resulting from the automatic derivation such as the "Bank Clerk
A" and "Bank Clerk B" candidate roles which will most likely be
combined into a single "Bank Clerk" role (see Section 3). Nev-
ertheless, although the candidate artifacts require a subsequent re-
finement, the automated derivation facilitates a monotonic and thus
error-prone task, and thereby significantly eases the tasks of human
role engineers.

5. RELATED WORK
Role mining is related to role engineering and aims to derive

RBAC policy sets from permissions and role definitions that exist
in the software systems of an organization. In [14], Kuhlmann et
al. apply data mining techniques to detect patterns in a set of ac-
cess rights. Subsequently, they use these patterns to derive candi-
date roles combined with business (organizational and functional)
information. In [10], Frank et al. present an approach for hybrid
role mining. In particular, they first review preexisting business in-
formation to determine their relevance for the role mining process.
Afterwards, they include the preexisting business information, such
as the organizational hierarchy or job descriptions, in the role cre-
ation step of role mining. Colantonio et al. [4], present a similar
approach to use business information in a role mining approach.
The approach is applied to identify the roles that are to be included
in a candidate role set. Molloy et al. [17] applied role mining tech-
niques to identify roles with semantic meaning. In case subject-to-
permission relations are the only information available, they apply
formal concept analysis to find roles. If certain user-attribute infor-
mation is also available (e.g. job positions, departments, or job re-
sponsibilities) they propose to derive roles from such user-attribute
expressions. Our approach is complementary to role mining ap-
proaches and can be used in combination with role mining.

Similar to our approach, Wolter et al. derive access control poli-
cies from BPMN 1.0 models in the domain of Web Services [27].
They provide authorization constraint artifacts as extension for the
BPMN meta-model. These constraints can be assigned to groups,
lanes, and respective activities to define separation of duty and
binding of duty constraints. To automate the extraction of secu-
rity policies from process models, they propose a mapping from
selected meta-model entities of BPMN and XACML (eXtensible

6http://english.bmf.gv.at/
7http://www.abb.com/
8http://www.ey.com/
9http://www.wien.gv.at/ma14/

Access Control Markup Language). XSLT is applied to automate
the generation of enforceable XACML policies.

Fernandez and Hawkins [6] suggested an early approach to de-
termine role rights from use cases. In particular, they propose to
extend the textual description of use cases in order to define se-
curity requirements for use cases. Authorization rules are then de-
rived from the specifications defined in the use case descriptions. In
addition, they complement the use case descriptions with scenario
diagrams to discover role rights. In [16], Mendling et al. intro-
duced an approach to extract RBAC models from BPEL (Business
Process Execution Language) processes. The approach integrates
BPEL and RBAC on the meta-model level and describes how cer-
tain RBAC artifacts can be automatically derived from BPEL pro-
cesses. Similar to the approach presented in this paper, the ap-
proach from [16] can be used to automate steps of the role engi-
neering process.

Our work complements the contributions mentioned above by
providing an approach for the automated derivation of role engi-
neering artifacts from UML activity models, UML interaction mod-
els and BPMN collaboration models. In principle, it can be com-
bined with each of the above mentioned approaches.

6. CONCLUSION
The scenario-driven role engineering process provides a system-

atic approach to engineer and maintain customized RBAC models.
In recent years, we gained many experiences which resulted in an
evolutionary enhanced role engineering process and a much better
understanding of related activities and artifacts. In addition to our
own projects and case studies, scenario-driven role engineering is
used by several consulting firms and in international projects (see
Section 4).

Such as every engineering process, the role engineering process
depends significantly on human factors and cannot be completely
automated. However, the automated derivation of role engineer-
ing artifacts from scenario and process models can significantly
ease role engineering tasks. In particular, the automation of certain
role engineering steps can help to facilitate monotonic and thereby
error-prone tasks. In this paper, we presented an approach to de-
rive role engineering artifacts from UML activity models, UML
interaction models and BPMN collaboration models. However, our
general approach for the derivation of role engineering artifacts is
based on meta-model integration and is therefore independent of
the UML, BPMN, or any other modeling language (see Section
1.2).

Human role engineers as well as domain experts from the respec-
tive organization can adapt and refine the derived candidate role
engineering artifacts in order to specify a tailored RBAC model.
Furthermore, to ease the work of role engineers and to reduce ambi-
guities in the derived role engineering artifacts, we recommend the
following simple modeling guidelines for UML and BPMN: a) the
name of an UML interaction model should be identical to the name
of the action it refines; b) the names of subjects and objects should
be consistent across the models (i.e. in UML the same subject or
object is always referenced via the same identifier string or id, such
as the "CustomerMgmt" sub-system or the "Bank Clerk" actor from
our example) c) a clear understanding of lanes in a model should be
defined, since BPMN leaves the meaning of lanes up to the model-
ers and d) the usage of PartnerRoles, PartnerEntities and Resources
across all BPMN models for participants, lanes and tasks should be
accurately defined.

In our future work, we will further investigate how we can de-
rive different types of candidate constraints (such as context con-
straints, see [26]) from UML and BPMN models. In addition, we

are currently investigating the options to combine the derivations
from scenario and process models based on different languages to
automatically propose a candidate RBAC model. Moreover, we
plan to investigate further options to integrate role engineering and
related role mining and process mining approaches.

7. REFERENCES
[1] G. J. Ahn and R. Sandhu. Role-Based Authorization

Constraints Specification. ACM Transactions on Information

and System Security (TISSEC), 3(4), November 2000.

[2] V. Apparao, S. Byrne, M. Champion, and et. al. Document
Object Model (DOM) Level 1 Specification. available at:
http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001/, October 1998. W3 Consortium
Recommendation.

[3] D. Clark and D. Wilson. A Comparison of Commercial and
Military Computer Security Policies. In Proc. of the IEEE
Symposium on Security and Privacy, April 1987.

[4] A. Colantonio, R. Di Pietro, A. Ocello, and N. V. Verde. A
Formal Framework to Elicit Roles with Business Meaning in
RBAC Systems. In Proc. of the 14th ACM Symposium on

Access Control Models and Technologies (SACMAT), June
2009.

[5] E. Coyne and J. Davis. Role Engineering for Enterprise

Security Management. Artech House, 2008.

[6] E. B. Fernandez and J. C. Hawkins. Determining Role Rights
from Use Cases. In Proc. of the 2nd ACM Workshop on

Role-Based Access Control (RBAC), New York, NY, USA,
1997.

[7] D. Ferraiolo, J. Barkley, and D. Kuhn. A Role-Based Access
Control Model and Reference Implementation within a
Corporate Intranet. ACM Transactions on Information and

System Security (TISSEC), 2(1), February 1999.

[8] D. Ferraiolo and D. Kuhn. Role-Based Access Controls. In
Proc. of the 15th National Computer Security Conference

(CSC), October 1992.

[9] D. Ferraiolo, D. Kuhn, and R. Chandramouli. Role-Based
Access Control, Second Edition. Artech House, 2007.

[10] M. Frank, A. P. Streich, D. A. Basin, and J. M. Buhmann. A
Probabilistic Approach to Hybrid Role Mining. In Proc. of
the 16th ACM Conference on Computer and

Communications Security (CCS), 2009.

[11] A. L. Hors, P. L. Hegaret, L. Wood, and et. al. Document
Object Model (DOM) Level 2 Core Specification. available
at: http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-
20001113/, November 2000. W3 Consortium
Recommendation.

[12] A. L. Hors, P. L. Hegaret, L. Wood, G. Nicol, J. Robie,
M. Champion, and S. Byrne. Document Object Model
(DOM) Level 3 Core Specification, Version 1.0. available at:
http://www.w3.org/TR/DOM-Level-3-Core, April 2004. W3
Consortium Recommendation.

[13] M. Jarke, X. Bui, and J. Carroll. Scenario Management: An
Interdisciplinary Approach. Requirements Engineering
Journal, 3(3/4), 1998.

[14] M. Kuhlmann, D. Shohat, and G. Schimpf. Role Mining -
Revealing Business Roles for Security Administration using
Data Mining Technology. In Proc. of the 7th ACM
Symposium on Access Control Models and Technologies

(SACMAT), New York, NY, USA, 2003.

[15] S. Kunz, S. Evdokimov, B. Fabian, B. Stieger, and
M. Strembeck. Role-Based Access Control for Information

Federations in the Industrial Service Sector. In Proc. of the
18th European Conference on Information Systems (ECIS),
June 2010.

[16] J. Mendling, M. Strembeck, G. Stermsek, and G. Neumann.
An Approach to Extract RBAC Models from BPEL4WS
Processes. In Proc. of the 13th IEEE International

Workshops on Enabling Technologies: Infrastructures for

Collaborative Enterprises (WETICE), June 2004.

[17] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino,
S. Calo, and J. Lobo. Mining roles with semantic meanings.
In Proc. of the 14th ACM Symposium on Access Control

Models and Technologies (SACMAT), pages 21–30, New
York, NY, USA, 2008. ACM.

[18] G. Neumann and M. Strembeck. A Scenario-driven Role
Engineering Process for Functional RBAC Roles. In Proc. of
7th ACM Symposium on Access Control Models and

Technologies (SACMAT), June 2002.

[19] OMG. Business Process Modeling Notation (BPMN).
available at: http://www.omg.org/spec/BPMN/2.0/Beta2/,
May 2010. Version 2.0 - Beta 2, dtc/2010-06-04, The Object
Management Group.

[20] MOF 2.0 / XMI Mapping Specification. available at:
http://www.omg.org/technology/documents/formal/xmi.htm,
December 2007. Version 2.1.1, formal/2007-12-01, The
Object Management Group.

[21] OMG Unified Modeling Language (OMG UML):
Superstructure. available at:
http://www.omg.org/technology/documents/formal/uml.htm,
February 2009. Version 2.2, formal/2009-02-02, The Object
Management Group.

[22] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-Based Access Control Models. IEEE Computer, 29(2),
February 1996.

[23] M. Strembeck. A Role Engineering Tool for Role-Based
Access Control. In Proc. of the 3rd Symposium on

Requirements Engineering for Information Security (SREIS),
August 2005.

[24] M. Strembeck. Scenario-Driven Role Engineering. IEEE
Security & Privacy, 8(1), January/February 2010.

[25] M. Strembeck and J. Mendling. Generic Algorithms for
Consistency Checking of Mutual-Exclusion and Binding
Constraints in a Business Process Context. In Proc. of the
18th International Conference on Cooperative Information

Systems (CoopIS), Lecture Notes in Computer Science

(LNCS), Vol. 6426, Springer Verlag, October 2010.

[26] M. Strembeck and G. Neumann. An Integrated Approach to
Engineer and Enforce Context Constraints in RBAC
Environments. ACM Transactions on Information and

System Security (TISSEC), 7(3), August 2004.

[27] C. Wolter, A. Schaad, and C. Meinel. Deriving xacml
policies from business process models. In M. Weske,
M. Hacid, and C. Godart, editors, Web Information Systems

Engineering, WISE 2007 Workshops, volume 4832 of
Lecture Notes in Computer Science, pages 142–153.
Springer Berlin / Heidelberg, 2007.

