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Abstract—In a business process context, access permissions
grant the rights to perform certain tasks. In particular, process-
related role-based access control (RBAC) models define RBAC
policies for process-aware information systems (PAIS). In
addition, process-related RBAC models allow for the definition
of entailment constraints on tasks, such as mutual exclusion
or binding constraints, for example. This paper presents an
approach to derive process-related RBAC models from process
execution histories recorded by a PAIS. In particular, we
present algorithms to derive corresponding RBAC artifacts and
entailment constraints from standardized XML-based log files.
All algorithms presented in this paper have been implemented
and were tested via process logs created with CPN Tools.
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I. INTRODUCTION

Process-aware information systems (PAIS) support the

execution of tasks that are included in a business process [1].

The history of process executions in a PAIS can be recorded

in special purpose log files often referred to as “event log”,

“audit trail”, “history”, or “transaction log”. In the remainder

of this paper, we refer to such a file as the process execution

history.

In recent years, role-based access control (RBAC) has

developed into a de facto standard for access control (see,

e.g., [2]–[4]). In RBAC, permissions are assigned to roles,

and roles are assigned to subjects (e.g. human users). A

process-related RBAC model (see, e.g., [5]–[8]) supports

the definition of access control policies and entailment

constraints on tasks. Entailment constraints, such as mutual

exclusion and binding constraints, define which combina-

tion of subjects and roles is allowed to execute particular

tasks (see, e.g., [5], [6], [9]–[11]). Mutual exclusion (ME)

constraints result from the division of powerful privileges

to avoid fraud and abuse. Thus, two (or more) mutually

exclusive tasks must not be executed by the same subject or

role. In contrast, binding constraints specify that the same

subject or role has to perform two bound tasks.

From our experiences, gained in real-world projects and

case studies, business processes as well as corresponding

permissions or entailment constraints are often insufficiently

documented – sometimes they are not documented at all. In

this case, organizational mining can be applied to derive in-

formation about the subjects executing tasks in a PAIS (see,

e.g., [12]–[14]). In this paper, we complement corresponding

organizational mining approaches and present algorithms to

derive process-related RBAC models from process execution

histories (log files) of a PAIS. In particular, we derive

current-state RBAC models that document the current state

of this PAIS. These RBAC models contain roles, subjects,

tasks/permissions, assignment relations, as well as binding

and mutual exclusion constraints defined on tasks (see also

[15]).

A. Approach Overview

Figure 1 gives an overview of the steps we perform to

derive current-state RBAC models.
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Figure 1. Deriving current-state RBAC models: Overview

In this paper, we focus on deriving candidate RBAC

artifacts and assignment relations, as well as candidate mu-

tual exclusion and binding constraints defined on tasks (see

Figure 1). The artifacts and artifact relations that are derived

from a process execution history are candidates because

they are subject to a subsequent refinement performed by a

domain expert. One of the reasons for such a refinement is

that the process execution history records all executions in a

PAIS regardless of organizational changes (such as changes

of the user’s work profiles). For a tailored RBAC model,

artifacts and artifact relations can be modified, added, or

removed. For example, a new task could be added if this
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task is rarely executed and is therefore not recorded in a

certain process execution history.

In particular, we extend the approach from [16] to derive

candidate RBAC artifacts and assignment relations from a

process execution history (see Section III-A). Moreover, we

present algorithms to parse the process execution history

of a PAIS to derive candidates for mutual exclusion and

binding constraints (see Sections III-B – III-E). The candi-

date artifacts, assignment relations, and constraints will be

combined to produce the current-state RBAC model (see

Figure 1). Subsequently, all candidates can be fed into a

corresponding software tool to further manipulate/refine the

respective RBAC artifacts and associations and to build a

tailored RBAC model (see, e.g., [17], [18]).

The remainder of this paper is organized as follows.

Section II provides the definitions for process-related RBAC

models and process execution histories. In Section III, we

present the derivation of current-state RBAC models in

detail. It includes the derivation of RBAC artifacts and their

assignment relations, as well as algorithms to derive mutual

exclusion and binding constraints. Section IV discusses

related work and Section V concludes the paper.

II. BACKGROUND

A. Role-Based Access Control Models

For the purposes of this paper, Definition 1 repeats some

of the definitions for process-related RBAC models (for

details see [5]).

Definition 1 (Process-related RBAC Model). Let S be a

set of subjects, R a set of roles, PT a set of process types,

PI a set of process instances, TT a set of task types, and

TI a set of task instances. A process-related RBAC Model

PRM = (E,Q,D) where E = S ∪R∪PT ∪PI ∪TT ∪TI

refers to pairwise disjoint sets of the model, Q = rsa∪tra∪
pi∪ti∪es∪er to mappings that establish relationships, and

D = sme∪ dme∪ sb∪ rb to mutual exclusion and binding

constraints. For the partial mappings of the meta-model (P
refers to the power set):

1) The mapping rsa : S 7→ P(R) is called role-to-

subject assignment. For rsa(s) = Rs we call s ∈ S

subject and Rs ⊆ R the set of roles assigned to this

subject (the set of roles owned by s).

2) The mapping tra : R 7→ P(TT ) is called task-to-role

assignment. For tra(r) = Tr we call r ∈ R role and

Tr ⊆ TT is called the set of tasks assigned to r.

3) The mapping pi : PT 7→ P(PI) is called process

instantiation. For pi(pT ) = Pi we call pT ∈ PT

process type and Pi ⊆ PI the set of process instances

instantiated from process type pT .

4) The mapping ti : (TT × PI) 7→ P(TI) is called task

instantiation. For ti(tT , pI) = Ti we call Ti ⊆ TI set

of task instances, tT ∈ TT is called task type and

pI ∈ PI is called process instance.

5) The mapping es : TI 7→ S is called executing-subject

mapping. For es(t) = s we call s ∈ S the executing-

subject and t ∈ TI is called executed task instance.

6) The mapping er : TI 7→ R is called executing-role

mapping. For er(t) = r we call r ∈ R the executing-

role and t ∈ TI is called executed task instance.

7) The mapping sme : TT 7→ P(TT ) is called static

mutual exclusion. For sme(t1) = Tsme with Tsme ⊆
TT we call each pair t1 ∈ TT and tx ∈ Tsme statically

mutual exclusive tasks.

8) The mapping dme : TT 7→ P(TT ) is called dy-

namic mutual exclusion. For dme(t1) = Tdme with

Tdme ⊆ TT we call each pair t1 ∈ TT and tx ∈ Tdme

dynamically mutual exclusive tasks.

9) The mapping sb : TT 7→ P(TT ) is called subject-

binding. For sb(t1) = Tsb we call t1 ∈ TT the subject

binding task and Tsb ⊆ TT the set of subject-bound

tasks.

10) The mapping rb : TT 7→ P(TT ) is called role-binding.

For rb(t1) = Trb we call t1 ∈ TT the role binding task

and Trb ⊆ TT the set of role-bound tasks.
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Figure 2. Example of a process-related RBAC model

Figure 2 depicts an RBAC model example. It shows two

subjects (s1, s2), two roles (r1, r2), as well as three tasks

(t1, t2, t3) which include mutual exclusion and binding

constraints (see, e.g., [5], [7]–[9], [11], [19]). Tasks can

be defined as statically mutual exclusive (on the process

type level) or dynamically mutual exclusive (on the process

instance level). A static mutual exclusion (SME) constraint

defines that two SME tasks must never be assigned to the

same role. In contrast, two dynamically mutual exclusive

(DME) tasks can be assigned to the same role, but must be

performed by two different subjects within the same process

instance . For example, in Figure 2 subjects owning the role

r2 are allowed to perform the two DME tasks t2 (e.g. to

order supplies) and t3 (e.g. to approve an order). However,

in the same process instance (e.g. for one particular order)

the subject performing task t2 must be different from the

subject performing t3.
Bound tasks can be subdivided into subject-bound and

role-bound tasks. A subject-binding (SB) constraint defines



that two bound tasks must be performed by the same subject.

In turn, a role-binding (RB) constraint defines that bound

tasks must be performed by members of the same role, but

not necessarily by the same subject. The example in Figure

2 shows a subject-binding constraint defined on the tasks t1
(e.g. to collect inventory data) and t2 (e.g. to order supplies).

Here, the SB constraint defines that the subject collecting the

inventory data (t1) also has to order the needed supplies (t2).

B. Process Execution History

The process execution history contains information about

the tasks performed in a PAIS. We refer to an entry in

the process execution history as process history entry (see

Figure 3). Each entry includes a task instance and the

subject executing the task instance. Definition 2 resembles

the definition from [13] and specifies the essential elements

of a process execution history.

Definition 2 (Process Execution History). Let TI be a set

of task instances, PI a set of process instances, and S a

set of subjects performing task instances (see Definition

1). An element of E = TI × S is called process history

entry. E denotes the set of process history entries and

pi ∈ PI denotes a process instance for which EPI
is the

set of possible sequences of entries describing the particular

process instance pi.

A process execution history PH ∈ B(pi) is a multi-set of

all possible process instances, such that:

1) For ex = (ti, sj), the subject sj ∈ S performed the

task instance ti in process history entry ex ∈ E.

This definition corresponds to the executing-subject

mapping es(ti) = sj of Definition 1.5 where sj is

the executing-subject of task instance ti.

2) For pi = (e0, e1, ..., ek), pi ∈ PH is called process

instance and e0, ..., ek ∈ E are the process history

entries belonging to the process instance pi ∈ PI . In

correspondence to Definition 1.4, the task instance in

a process history entry is the instantiation of a specific

task type.

Figure 3 shows an example of a process execution his-

tory. A process execution history contains several process

instances. Each process instance consists of several process

history entries which describe the sequence of task instances

executed in the corresponding process instance. Figure 3

also shows the task execution history (TH) which records

all task instances, process instances, and the corresponding

executing-subjects for a specific task type. Definition 3

specifies task execution histories (cf. [13]).

Definition 3 (Task Execution History). Let TT be a set of

task types, TI a set of task instances, S a set of subjects,

and PI a set of process instances (see also Definition 1). The

task execution history TH ∈ (TI×S×PI) refers to a record

of the set of task instances TI , the set of executing-subjects

S, and the set of process instances PI such that:

Process Execution History
process 

instance ID

task

instance

executing

subject

pi1

... ... ...

... ... ...

pi2

pi3

pi3

"A"1

"B"1

"A"2

"C"1

Alice

Claire

Bob

Alice

Task Execution History

thS("A") = {Alice,Claire}

th("A") = {("A"1,Alice,pi1),("A"2,Claire,pi2)}

Subject Group

thI("A") = {"A"1,"A"2}

Executed Task Instances

thP("A") = {pi1,pi2}

Executed Process Instances

Process Instance

pi3={("B"1, Alice), ("C"1, Bob)}

Process History Entry

e2pi3 = ("C"1, Bob)

Figure 3. Example of a process execution history

1) The task execution history of a particular task type is

defined as mapping th : TT 7→ P({(tx, sx, px)|tx ∈
TI , sx ∈ S, px ∈ PI}). The task execution history of

a task type returns a record of triples, each consisting

of a task instance, a subject, and a process instance.

For each task type t ∈ TT , the task execution history

is defined as th(t) = {(tx, sx, px)|px ∈ PI , tx ∈
TI , sx ∈ S : tx ∈ ti(t, px) ∧ es(tx) = sx}.

2) The task execution history implies a mapping subject

group thS : TT 7→ P(S) that returns all executing-

subjects of a task type. The mapping executed task

instances thI : TT 7→ P(TI) returns all task instances
of a task type. Likewise, the mapping executed process

instances thP : TT 7→ P(PI) returns all process

instances in which a instance of the task type was

executed.

The task execution history can be derived from the process

execution history. Figure 3 shows the task execution history

of task type “A”. From this history the subject group of “A”

is a set containing “Alice” and “Claire” who performed (at

least) one task instance of task type “A”. This means, the

subject group mapping thS shows the executing-subjects of

one task type.

III. DERIVING PROCESS-RELATED RBAC MODELS

We discuss our approach using a process execution his-

tory created with CPN Tools (see [20]). For demonstration

purposes, we use a simplified example of a credit application

process (see Figure 4) for which we generated corresponding

XML-based log files. MXML (Mining XML) [21] and XES

(Extensible Event Stream) [22] are two common standard

formats for process execution histories in XML syntax. We

use the CPN Tools to produce log files in these formats and

to determine the structure and content of the process execu-

tion history. Furthermore, using the simulation capabilities of

CPN Tools allows us to integrate all kinds of candidates for

artifacts, assignment relations, and constraints in a controlled



manner. For example, we can include a subject-binding con-

straint between the “Check credit worthiness” task and the

“Negotiate contract” task of the credit application process

shown in Figure 4. In this way, we tested our algorithms for

the derivation of process-related RBAC models that include

all kinds of artifacts, assignment relations, and constraints.

Credit

application

[else]

Credit application process

[Check passed]

[else] Contract

Contract

[approved]

[Form Ok]

[else]

Check credit
worthiness

Negotiate
contract

Approve
contract

Check 
application form

Reject
application

Credit 
application

Figure 4. UML model of a credit application process

For the sake of simplicity, the examples of process ex-

ecution histories shown below include only two process

instances respectively. However, to derive useful RBAC arti-

facts and constraints, we tested our algorithms with histories

that include a much larger number of process instances, of

course.

A. Deriving Candidate Artifacts and Assignment Relations

With respect to [16], we can derive candidate RBAC

artifacts from process execution history files in MXML or

XES format. Figure 5 shows the main relations between

elements of a process execution history and corresponding

RBAC artifacts. Based on Definitions 1–3, the following

derivation rules are applied (see also Figure 5 and [16]):

• The executing-subject stored in a process execution

history serves as candidate subject for the current-state

RBAC model.

• The task types stored in a process execution history

identify candidate tasks/permissions for the current-

state RBAC model.

• The subject group of a task type is used to derive

a candidate role1. This is because, a subject group

defines all subjects performing a certain task type (see

Definition 3).

• A candidate role-to-subject assignment (rsa) for

the current-state RBAC model is derived for each

executing-subject in a subject group.

• A task-to-role assignment (tra) relation is derived via

the relation between a task type and its subject group.

To reduce the number of candidate roles, as well as

corresponding task-to-role and role-to-subject assignment

1Note that the number of candidate roles depends on the number of tasks
recorded in a process execution history. With respect to Definition 3, each
task type is associated to one subject group that includes all subjects who
performed an instance of this task type. Therefore, each candidate role has
one task/permission and may be assigned to one or more subjects.
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Figure 5. Process execution history elements and RBAC artifacts

relations, we can apply organizational mining techniques

(see, e.g., [12]–[14]). For example, Song and van der Aalst

[13] use a mining algorithm to sort subjects into groups.

Based on this algorithm, subjects who most often perform

the same tasks form such a group.

In XES, a subject’s position in the organization can also

be stored in the process execution history. In particular, the

XES standard defines the precise semantics of its attributes

via extensions. The “Organizational” extension provides the

“org:role” attribute which identifies a subject’s position in

the organization (for details see [22]). Thus, the “org:role”

attribute in XES can also be used to derive candidate roles

for the current-state RBAC model.

B. Deriving Candidate SME Constraints

We assume that a SME constraint on two tasks can

be derived from a process execution history if both tasks

are never performed by the same subject. However, this

assumption can result in an RBAC model that includes a

potentially large number of false positives. In other words,

two task types that are included in two different process

types are not necessarily SME tasks, even if they are never

executed by the same subject. To reduce the number of false

positives, we therefore derive candidate SME constraints for

each process type separately. Procedure 1 compiles the set of

all executing-subjects of a task type for a particular process

type. First, Procedure 1 traverses all process instances of

a given process type (line 2). Second, for each process

instance, it traverses all task instances of a given task type

(line 3) to compile the set of subjects who performed the

task type in the context of this particular process type (line

4).

Procedure 1. Compile the subject group of a task type for
a particular process type.

Name: allExecutingSubjects
Input: taskx ∈ TT , processt ∈ PT

1: create allsubjects ⊲ empty set that disallows duplicates

2: for each p ∈ pi(processt) do
3: for each t ∈ ti(taskx, p) do
4: add es(t) to allsubjects
5: end for
6: end for
7: return allsubjects

Using the process execution history, we derive a candidate



SME constraint between two tasks of the same process type

if no subject exists who executes both tasks (see also Defi-

nition 1.7 and [5]). This means, a candidate SME constraint

defined on two tasks taskx, tasky ∈ TT for a process type

pt ∈ PT is derived if allExecutingSubjects(taskx, pt) ∩
allExecutingSubjects(tasky, pt) = ∅ applies. Thus, Algo-
rithm 1 checks if the executing-subjects of two task types for

a given process type are disjunct and then defines a candidate

SME constraint on the given task types.

Algorithm 1 Derive candidate SME constraints

Input: TT , pt ∈ PT

1: for each taskx ∈ TT do
2: for each tasky ∈ TT | tasky 6= taskx do
3: if allExecutingSubjects(taskx, pt)∩
4: allExecutingSubjects(tasky, pt) = ∅ then
5: set taskx ∈ sme(tasky) ⊲ marked as candidate

6: end if
7: end for
8: end for

Figure 6 shows a process execution history excerpt in

MXML standard format2. It shows two example process

instances (ProcessInstance), each containing two process

execution entries (AuditTrailEntry). An entry is composed

of a task instance (WorkflowModelElement) and an executing-

subject (Originator). In Figure 6, the two task instances

“Check credit worthiness” and “Approve contract” are exe-

cuted by different subjects (shown via arrow 1). In this ex-

cerpt, “Alice” and “Susan” perform the first task (thS(Check
for credit worthiness) = {Alice, Susan}) and “Bob” per-

forms the second task (thS(Approve contract) = {Bob})
(shown via arrow 2). Using the process execution history

shown in Figure 6, we can derive a candidate SME constraint

defined on these two tasks because these tasks are not

performed by the same subject.

  <ProcessInstance id="1"><AuditTrailEntry>

    <WorkflowModelElement>

      Check credit worthiness</WorkflowModelElement>

    <Originator>ALICE</Originator>

   </AuditTrailEntry>

   <AuditTrailEntry>

    <WorkflowModelElement>

      Approve contract</WorkflowModelElement>

    <Originator>BOB</Originator>

   </AuditTrailEntry></ProcessInstance>

  

  <ProcessInstance id="n"><AuditTrailEntry>

    <WorkflowModelElement>

      Check credit worthiness</WorkflowModelElement>

    <Originator>SUSAN</Originator>

   </AuditTrailEntry>

   <AuditTrailEntry>

    <WorkflowModelElement>

      Approve contract</WorkflowModelElement>

    <Originator>BOB</Originator>

   </AuditTrailEntry></ProcessInstance>

2) 2)

1)

1)

...

Figure 6. Example detection of SME tasks

2The detection of constraints from XES is conducted in the same way.

C. Deriving Candidate DME Constraints

We derive candidate DME constraints if two tasks are

never executed by the same subject in the same process

instance. In contrast to SME constraints, DME tasks can

be executed by the same subjects within different process

instances (see also Definition 1.8 and [5]). In other words,

a subject is allowed to execute two DME tasks but not

in the same process instance. Therefore, a candidate DME

constraint defined on two task types taskx, tasky ∈ TT

is derived if for each process instance pi ∈ PI and for

all corresponding task instances tx, ty ∈ TI : tx ∈
ti(taskx, pi) ∧ ty ∈ ti(tasky, pi) ∧ es(tx) 6= es(ty) applies.
Algorithm 2 traverses all process instances and checks if the

executing-subjects of two task types differ in each process

instance and then defines a candidate DME constraint on the

given task types.

Algorithm 2 Derive candidate DME constraints

Input: TT , PI

1: for each taskx ∈ TT do
2: for each tasky ∈ TT | tasky 6= taskx do
3: for each pi ∈ PI |∀tx, ty ∈ TI :
4: tx ∈ ti(taskx, pi) ∧ ty ∈ ti(tasky, pi)∧
5: es(tx) 6= es(ty) do
6: set taskx ∈ dme(tasky) ⊲ marked as candidate

7: end for
8: end for
9: end for

Again, Figure 7 depicts a process execution history ex-

cerpt with two process instances. In Figure 7, the two task

instances “Negotiate contract” and “Approve contract” were

both performed by the same subjects “Alice” and “Bob”

(shown via arrow 1). However, in each process instance both

tasks were performed by a different subject (shown via arrow

2). Therefore, we derive a candidate DME constraint for the

tasks from Figure 7.

  <ProcessInstance id="1"><AuditTrailEntry>

    <WorkflowModelElement>

      Negotiate contract</WorkflowModelElement>

    <Originator>ALICE</Originator>

   </AuditTrailEntry>

   <AuditTrailEntry>

    <WorkflowModelElement>

      Approve contract</WorkflowModelElement>

    <Originator>BOB</Originator>

   </AuditTrailEntry></ProcessInstance>

  

  <ProcessInstance id="n"><AuditTrailEntry>

    <WorkflowModelElement>

      Negotiate contract</WorkflowModelElement>

    <Originator>BOB</Originator>

   </AuditTrailEntry>

   <AuditTrailEntry>

    <WorkflowModelElement>

      Approve contract</WorkflowModelElement>

    <Originator>ALICE</Originator>

   </AuditTrailEntry></ProcessInstance>

1) 1)

2)

2)

...

Figure 7. Example detection of DME tasks



D. Deriving Candidate Subject-Binding (SB) Constraints

A SB constraint defines that two (or more) subject-bound

tasks must be performed by the same subject (see also

Definition 1.9 and [5]). We derive a candidate SB constraint

from a process execution history, if for each process instance

the subject executing one task instance is the same subject

who executes a consecutive task instance. This means, two

tasks taskx, tasky ∈ TT are candidate SB tasks if for

each process instance pi ∈ PI and for all corresponding

task instances tx, ty ∈ TI : tx ∈ ti(taskx, pi) ∧ ty ∈
ti(tasky, pi) ∧ es(tx) = es(ty) applies. Thus, Algorithm 3

traverses all process instances and checks if the executing-

subjects of two task types are equal and then defines a

candidate SB constraint on the given task types.

Algorithm 3 Derive candidate SB constraints

Input: TT , PI

1: for each taskx ∈ TT do
2: for each tasky ∈ TT | tasky 6= taskx do
3: for each pi ∈ PI |∀tx, ty ∈ TI :
4: tx ∈ ti(taskx, pi) ∧ ty ∈ ti(tasky, pi)∧
5: es(tx) = es(ty) do
6: set taskx ∈ sb(tasky) ⊲ marked as candidate

7: end for
8: end for
9: end for

Figure 8 depicts a process execution history excerpt

with two process instances that include the tasks “Check

credit worthiness” and “Negotiate contract”. This example

shows that both tasks are always performed by the same

subject within the same process instance (shown via arrows).

Therefore, we derive a candidate SB constraint from this

process execution history.

  <ProcessInstance id="1"><AuditTrailEntry>

    <WorkflowModelElement>

      Check credit worthiness</WorkflowModelElement>

    <Originator>CLAIRE</Originator>

   </AuditTrailEntry>

   <AuditTrailEntry>

    <WorkflowModelElement>

      Negotiate contract</WorkflowModelElement>

    <Originator>CLAIRE</Originator>

   </AuditTrailEntry></ProcessInstance>

  

  <ProcessInstance id="n"><AuditTrailEntry>

    <WorkflowModelElement>

      Check credit worthiness</WorkflowModelElement>

    <Originator>ALICE</Originator>

   </AuditTrailEntry>

   <AuditTrailEntry>

    <WorkflowModelElement>

      Negotiate contract</WorkflowModelElement>

    <Originator>ALICE</Originator>

   </AuditTrailEntry></ProcessInstance>

...

Figure 8. Example detection of SB tasks

Furthermore, we can analyze the assignment relations

to exclude false positive SB constraints. For example, a

role may exist that is owned by a single subject only. In

this case, two (or more) tasks assigned to such a role are

not necessarily subject-bound. This is because, only one

subject is allowed to perform these tasks via her/his role

ownership. Thus, such a role-to-subject assignment relation

indicates that the candidate subject-bound tasks of this role

can potentially be removed in a refined RBAC model.

E. Deriving Candidate Role-Binding (RB) Constraints

A RB constraint defines that two (or more) role-bound

tasks must always be performed by members of the same

role (see also Definition 1.10 and [5]). However, role-bound

tasks are not necessarily executed by the same subject.

To derive candidate RB constraints, the process execution

history must contain role information, i.e. information on

which role a subject has activated to execute the task.

In particular, we derive a candidate RB constraint if for

each process instance the executing-role of a task instance

is equivalent to the executing-role of a subsequent task

instance. This means, two tasks taskx, tasky ∈ TT are

candidate RB tasks if in each process instance pi ∈ PI

and for all corresponding task instances tx, ty ∈ TI : tx ∈
ti(taskx, pi) ∧ ty ∈ ti(tasky, pi) ∧ er(tx) = er(ty) applies.
Algorithm 4 traverses all process instances and checks if the

executing-role of two task types are equal and then defines

a candidate RB constraint on the given task types.

Algorithm 4 Derive candidate RB constraints

Input: TT , PI

1: for each taskx ∈ TT do
2: for each tasky ∈ TT | tasky 6= taskx do
3: for each pi ∈ PI |∀tx, ty ∈ TI :
4: tx ∈ ti(taskx, pi) ∧ ty ∈ ti(tasky, pi)∧
5: er(tx) = er(ty) do
6: set taskx ∈ rb(tasky) ⊲ marked as candidate

7: end for
8: end for
9: end for

Typically, MXML and XES files do not contain the

executing-role of a task instance. Therefore, we cannot

derive candidate role-bound tasks directly. However, we can

derive role information from the “Organizational” extension

provided in the XES standard for process execution histories

(see also Section III-A). Thus, we can only derive candidate

RB constraints if this organizational extension is used in a

process execution history.

For instance, Figure 9 shows an excerpt of an XES file

with two process instances (trace) that contain two process

history entries (event), respectively . Each entry is composed

of two elements (string). One with the key concept:name

representing the task instance and the other with the key

org:role representing the executing-role. In Figure 9, the

same role performed the tasks “Check credit worthiness”

and “Reject application” in each process instance (shown via

arrows). In the first process instance both tasks are executed

by subjects owning the role “Clerk”. In the second process



 <trace><string key="concept:name" value="1"/>

  <event>

   <string key="concept:name"

     value="Check credit worthiness"/>

   <string key="org:role" value="Clerk"/>

  </event>

  <event>

   <string key="concept:name"

     value="Reject application"/>

   <string key="org:role" value="Clerk"/>

  </event></trace>

 <trace><string key="concept:name" value="2"/>

  <event>

   <string key="concept:name"

     value="Check credit worthiness"/>

   <string key="org:role" value="Manager"/>

  </event>

  <event>

   <string key="concept:name" 

     value="Reject application"/>

   <string key="org:role" value="Manager"/>

  </event></trace>

...

Figure 9. Example detection of RB tasks

instance, these tasks are executed by subjects owning the

role “Manager”. Thus, for each process instance subjects

owning the same role execute the two tasks. Therefore, we

derive a candidate RB constraint from the process execution

history.

IV. RELATED WORK

Our work complements work from the area of process

mining, especially organizational mining. Organizational

mining aims to discover information about the relationship

between subjects and executed tasks in a PAIS (see, e.g.,

[12], [13]). Song and van der Aalst [13] introduce an

approach to mine organizational models and social structures

from process execution histories. For example, they use

mining techniques to cluster subjects into groups based on

their execution of similar tasks. Jin et al. [14] introduce an

algorithm to produce organizational models from process

execution histories. Similar to [13], Jin et al. use a similarity

measure to cluster subjects of a process execution history

into roles if they (partially) completed the same tasks in a

similar frequency. Moreover, Rembert and Ellis [23] provide

a formal definition to mine different aspects from process

execution histories. One aspect the authors present is the

role assignment perspective which captures the relationship

between roles and tasks. They introduce an algorithm to

calculate this relationship by clustering subjects using a

similarity metric.

In the context of process mining, “staff assignment min-

ing” aims at discovering assignment rules from log files and

corresponding organizational information (see, e.g., [24],

[25]). As a result the resulting staff assignment rules identify

the set of subjects who are allowed to perform certain tasks

based on the combination of subject properties (e.g. the role

or the abilities of a subject).

Moreover, our approach is related to role mining. In role

mining, data mining techniques are used to detect patterns

in a set of access permissions [26]. These patterns are

used to derive candidate RBAC policy sets. Furthermore,

several approaches exist that include preexisting business

information (e.g. job or department descriptions) to create

RBAC policy sets via role mining (see [27]–[31]).

In [16], we presented a preliminary approach to derive

candidate RBAC artifacts and assignment relations from

a process execution history. This paper extends the ap-

proach of [16] and provides algorithms to derive entail-

ment constraints, such as mutual exclusion and binding

constraints, from a process execution history. Thereby, our

work complements the approaches mentioned above by con-

sidering process-related information to automatically derive

candidate RBAC models that include task-based entailment

constraints.

V. CONCLUSION

PAIS record process execution histories that contain infor-

mation about the subjects performing the tasks included in

a business process. In this paper, we presented a systematic

approach for the automated derivation of candidate RBAC

models from process execution histories. Such RBAC mod-

els specify roles, subjects, tasks/permissions, assignment

relations, as well as mutual exclusion and binding con-

straints defined on tasks. Therefore, RBAC models derived

from process execution histories can serve as a basis for

understanding how an organization actually enforces access

control policies in PAIS.

In our future work, we will examine how other types of

candidate constraints (such as context constraints [32]) can

be derived from process execution histories.
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