
Deriving Process-Related RBACModels from Process Execution Histories

Anne Baumgrass, Sigrid Schefer-Wenzl, Mark Strembeck

Institute for Information Systems and New Media

Vienna University of Economics and Business (WU Vienna), Austria

Email: {firstname.lastname}@wu.ac.at

Abstract—In a business process context, access permissions
grant the rights to perform certain tasks. In particular, process-
related role-based access control (RBAC) models define RBAC
policies for process-aware information systems (PAIS). In
addition, process-related RBAC models allow for the definition
of entailment constraints on tasks, such as mutual exclusion
or binding constraints, for example. This paper presents an
approach to derive process-related RBAC models from process
execution histories recorded by a PAIS. In particular, we
present algorithms to derive corresponding RBAC artifacts and
entailment constraints from standardized XML-based log files.
All algorithms presented in this paper have been implemented
and were tested via process logs created with CPN Tools.

Keywords-PAIS; RBAC; Constraints; Process Execution His-
tory

I. INTRODUCTION

Process-aware information systems (PAIS) support the

execution of tasks that are included in a business process [1].

The history of process executions in a PAIS can be recorded

in special purpose log files often referred to as “event log”,

“audit trail”, “history”, or “transaction log”. In the remainder

of this paper, we refer to such a file as the process execution

history.

In recent years, role-based access control (RBAC) has

developed into a de facto standard for access control (see,

e.g., [2]). In RBAC, permissions are assigned to roles,

and roles are assigned to subjects (e.g. human users). A

process-related RBAC model (see, e.g., [3], [4]) supports

the definition of access control policies and entailment

constraints on tasks. Entailment constraints, such as mutual

exclusion and binding constraints, define which combination

of subjects and roles is allowed to execute particular tasks

(see, e.g., [3]–[6]). Mutual exclusion (ME) constraints result

from the division of powerful privileges to avoid fraud and

abuse. Thus, two (or more) mutually exclusive tasks must

not be executed by the same subject or role. In contrast,

binding constraints specify that the same subject or role has

to perform two bound tasks.

From our experiences, gained in real-world projects and

case studies, business processes as well as corresponding

permissions or entailment constraints are often insufficiently

documented – sometimes they are not documented at all. In

this case, organizational mining can be applied to derive in-

formation about the subjects executing tasks in a PAIS (see,

e.g., [7]–[9]). In this paper, we complement corresponding

organizational mining approaches and present algorithms to

derive process-related RBAC models from process execution

histories (log files) of a PAIS. In particular, we derive

current-state RBAC models that document the current state

of this PAIS. These RBAC models contain roles, subjects,

tasks/permissions, assignment relations, as well as binding

and mutual exclusion constraints defined on tasks.

A. Approach Overview

In this paper, we focus on deriving candidate RBAC

artifacts and assignment relations, as well as candidate

mutual exclusion and binding constraints defined on tasks.

The artifacts and artifact relations that are derived from a

process execution history are candidates because they are

subject to a subsequent refinement performed by a domain

expert. One of the reasons for such a refinement is that the

process execution history records all executions in a PAIS

regardless of organizational changes (such as changes of the

user’s work profiles). For a tailored RBAC model, artifacts

and artifact relations can be modified, added, or removed.

In particular, we extend the approach from [10] to derive

candidate RBAC artifacts and assignment relations from a

process execution history (see Section III-A). Moreover, we

present algorithms to parse the process execution history of a

PAIS to derive candidates for mutual exclusion and binding

constraints (see Sections III-B – III-E). The candidate arti-

facts, assignment relations, and constraints will be combined

to produce the current-state RBAC model.

The remainder of this paper is organized as follows.

Section II provides the definitions for process-related RBAC

models and process execution histories. In Section III, we

present the derivation of current-state RBAC models in

detail. Section IV discusses related work and Section V

concludes the paper.1

II. BACKGROUND

A. Role-Based Access Control Models

For the purposes of this paper, Definition 1 repeats some

of the definitions for process-related RBAC models (for

details see [3]).

1We provide an extended version of this paper on our Web page. In the
extended version we re-inserted the text and examples that we had to cut
from the paper due to the page restrictions for the proceedings version.

Definition 1 (Process-related RBAC Model). Let S be a

set of subjects, R a set of roles, PT a set of process types,

PI a set of process instances, TT a set of task types, and

TI a set of task instances. A process-related RBAC Model

PRM = (E,Q,D) where E = S ∪R∪PT ∪PI ∪TT ∪TI

refers to pairwise disjoint sets of the model, Q = rsa∪tra∪
pi∪ti∪es∪er to mappings that establish relationships, and

D = sme∪ dme∪ sb∪ rb to mutual exclusion and binding

constraints. For the partial mappings of the meta-model (P
refers to the power set):

1) The mapping rsa : S 7→ P(R) is called role-to-

subject assignment. For rsa(s) = Rs we call s ∈ S

subject and Rs ⊆ R the set of roles assigned to this

subject (the set of roles owned by s).

2) The mapping tra : R 7→ P(TT) is called task-to-role

assignment. For tra(r) = Tr we call r ∈ R role and

Tr ⊆ TT is called the set of tasks assigned to r.

3) The mapping pi : PT 7→ P(PI) is called process

instantiation. For pi(pT) = Pi we call pT ∈ PT

process type and Pi ⊆ PI the set of process instances

instantiated from process type pT .

4) The mapping ti : (TT × PI) 7→ P(TI) is called task

instantiation. For ti(tT , pI) = Ti we call Ti ⊆ TI set

of task instances, tT ∈ TT is called task type and

pI ∈ PI is called process instance.

5) The mapping es : TI 7→ S is called executing-subject

mapping. For es(t) = s we call s ∈ S the executing-

subject and t ∈ TI is called executed task instance.

6) The mapping er : TI 7→ R is called executing-role

mapping. For er(t) = r we call r ∈ R the executing-

role and t ∈ TI is called executed task instance.

7) The mapping sme : TT 7→ P(TT) is called static

mutual exclusion. For sme(t1) = Tsme with Tsme ⊆
TT we call each pair t1 ∈ TT and tx ∈ Tsme statically

mutual exclusive tasks.

8) The mapping dme : TT 7→ P(TT) is called dy-

namic mutual exclusion. For dme(t1) = Tdme with

Tdme ⊆ TT we call each pair t1 ∈ TT and tx ∈ Tdme

dynamically mutual exclusive tasks.

9) The mapping sb : TT 7→ P(TT) is called subject-

binding. For sb(t1) = Tsb we call t1 ∈ TT the subject

binding task and Tsb ⊆ TT the set of subject-bound

tasks.

10) The mapping rb : TT 7→ P(TT) is called role-binding.

For rb(t1) = Trb we call t1 ∈ TT the role binding task

and Trb ⊆ TT the set of role-bound tasks.

Tasks can be defined as statically mutual exclusive (on

the process type level) or dynamically mutual exclusive

(on the process instance level). A static mutual exclusion

(SME) constraint defines that two SME tasks must never

be assigned to the same role. In contrast, two dynamically

mutual exclusive (DME) tasks can be assigned to the same

role, but must be performed by two different subjects within

the same process instance (see, e.g., [3]).

Bound tasks can be subdivided into subject-bound and

role-bound tasks. A subject-binding (SB) constraint defines

that two bound tasks must be performed by the same subject.

In turn, a role-binding (RB) constraint defines that bound

tasks must be performed by members of the same role, but

not necessarily by the same subject.

B. Process Execution History

The process execution history contains information about

the tasks performed in a PAIS. We refer to an entry in

the process execution history as process history entry (see

Figure 1). Each entry includes a task instance and the

subject executing the task instance. Definition 2 resembles

the definition from [8] and specifies the essential elements

of a process execution history.

Definition 2 (Process Execution History). Let TI be a set

of task instances, PI a set of process instances, and S a

set of subjects performing task instances (see Definition

1). An element of E = TI × S is called process history

entry. E denotes the set of process history entries and

pi ∈ PI denotes a process instance for which EPI
is the

set of possible sequences of entries describing the particular

process instance pi.

A process execution history PH ∈ B(pi) is a multi-set of

all possible process instances, such that:

1) For ex = (ti, sj), the subject sj ∈ S performed the

task instance ti in process history entry ex ∈ E.

This definition corresponds to the executing-subject

mapping es(ti) = sj of Definition 1.5 where sj is

the executing-subject of task instance ti.

2) For pi = (e0, e1, ..., ek), pi ∈ PH is called process

instance and e0, ..., ek ∈ E are the process history

entries belonging to the process instance pi ∈ PI . In

correspondence to Definition 1.4, the task instance in

a process history entry is the instantiation of a specific

task type.

Figure 1 shows an example of a process execution his-

tory. A process execution history contains several process

instances. Each process instance consists of several process

history entries which describe the sequence of task instances

executed in the corresponding process instance. Figure 1

also shows the task execution history (TH) which records

all task instances, process instances, and the corresponding

executing-subjects for a specific task type. Definition 3

specifies task execution histories (cf. [8]).

Definition 3 (Task Execution History). Let TT be a set of

task types, TI a set of task instances, S a set of subjects,

and PI a set of process instances (see also Definition 1). The

task execution history TH ∈ (TI×S×PI) refers to a record

of the set of task instances TI , the set of executing-subjects

S, and the set of process instances PI such that:

Process Execution History
process

instance ID

task

instance

executing

subject

pi1

...

...

pi2

pi3

pi3

"A"1

"B"1

"A"2

"C"1

Alice

Claire

Bob

Alice

Task Execution History

thS("A") = {Alice,Claire}

th("A") = {("A"1,Alice,pi1),("A"2,Claire,pi2)}

Subject Group

thI("A") = {"A"1,"A"2}

Executed Task Instances

thP("A") = {pi1,pi2}

Executed Process Instances

Process Instance

pi3={("B"1, Alice), ("C"1, Bob)}

Process History Entry

e2pi3 = ("C"1, Bob)

Figure 1. Example of a process execution history

1) The task execution history of a particular task type is

defined as mapping th : TT 7→ P({(tx, sx, px)|tx ∈
TI , sx ∈ S, px ∈ PI}). The task execution history of

a task type returns a record of triples, each consisting

of a task instance, a subject, and a process instance.

For each task type t ∈ TT , the task execution history

is defined as th(t) = {(tx, sx, px)|px ∈ PI , tx ∈
TI , sx ∈ S : tx ∈ ti(t, pi) ∧ es(tx) = sx}.

2) The task execution history implies a mapping subject

group thS : TT 7→ P(S) that returns all executing-

subjects of a task type. The mapping executed task

instances thI : TT 7→ P(TI) returns all task instances
of a task type. Likewise, the mapping executed process

instances thP : TT 7→ P(PI) returns all process

instances in which a instance of the task type was

executed.

III. DERIVING PROCESS-RELATED RBAC MODELS

We discuss our approach using a process execution his-

tory created with CPN Tools (see [11]). For demonstration

purposes, we use a simplified example of a credit applica-

tion process (for details see [3]) for which we generated

corresponding XML-based log files.

For the sake of simplicity, the examples of process ex-

ecution histories shown below include only two process

instances respectively. However, to derive useful RBAC arti-

facts and constraints, we tested our algorithms with histories

that include a much larger number of process instances, of

course.

A. Deriving Candidate Artifacts and Assignment Relations

With respect to [10], we can derive candidate RBAC

artifacts from process execution history files in MXML or

XES format. Figure 2 shows the main relations between

elements of a process execution history and corresponding

RBAC artifacts. Based on Definitions 1–3, the following

derivation rules are applied (see also Figure 2 and [10]):

• The executing-subject stored in a process execution

history serves as candidate subject for the current-state

RBAC model.

• The task types stored in a process execution history

identify candidate tasks/permissions for the current-

state RBAC model.

• The subject group of a task type is used to derive

a candidate role. This is because, a subject group

defines all subjects performing a certain task type (see

Definition 3).

• A candidate role-to-subject assignment (rsa) for

the current-state RBAC model is derived for each

executing-subject in a subject group.

• A task-to-role assignment (tra) relation is derived via

the relation between a task type and its subject group.

*
R

B
A

C
 a

rt
if
a
c
ts

P
ro

c
e
s
s
 e

x
e
c
u
ti
o
n

h
is

to
ry

owner task/

permission

1..* *

includes

1

0..*

derived from

1

derived from

*

owner role

1

0..*

derived from

1..*

0..*

executed by

1..*

1

executes

1 1

Task

Instance

*

1

instantiated from

1..*

Role Task/PermissionSubject

Subject Task TypeSubject Group

Figure 2. Process execution history elements and RBAC artifacts

To reduce the number of candidate roles, as well as

corresponding task-to-role and role-to-subject assignment

relations, we can apply organizational mining techniques

(see, e.g., [7]–[9]).

In XES, a subject’s position in the organization can also

be stored in the process execution history. In particular, the

XES standard defines the precise semantics of its attributes

via extensions. The “Organizational” extension provides the

“org:role” attribute which identifies a subject’s position in

the organization (for details see [12]). Thus, the “org:role”

attribute in XES can also be used to derive candidate roles

for the current-state RBAC model.

B. Deriving Candidate SME Constraints

We assume that a SME constraint on two tasks can

be derived from a process execution history if both tasks

are never performed by the same subject. However, this

assumption can result in an RBAC model that includes a

potentially large number of false positives. In other words,

two task types that are included in two different process

types are not necessarily SME tasks, even if they are never

executed by the same subject. To reduce the number of false

positives, we therefore derive candidate SME constraints for

each process type separately. Procedure 1 compiles the set of

all executing-subjects of a task type for a particular process

type.

Procedure 1. Compile the subject group of a task type for
a particular process type.

Name: allExecutingSubjects
Input: taskx ∈ TT , processt ∈ PT

1: create allsubjects ⊲ empty set that disallows duplicates

2: for each p ∈ pi(processt) do
3: for each t ∈ ti(taskx, p) do
4: add es(t) to allsubjects
5: end for
6: end for
7: return allsubjects

A candidate SME constraint defined on two tasks

taskx, tasky ∈ TT for a process type pt ∈ PT

is derived if allExecutingSubjects(taskx, pt) ∩
allExecutingSubjects(tasky, pt) = ∅ applies (see

Algorithm 1).

Algorithm 1 Derive candidate SME constraints

Input: TT , pt ∈ PT

1: for each taskx ∈ TT do
2: for each tasky ∈ TT | tasky 6= taskx do
3: if allExecutingSubjects(taskx, pt)∩
4: allExecutingSubjects(tasky, pt) = ∅ then
5: set taskx ∈ sme(tasky) ⊲ marked as candidate

6: end if
7: end for
8: end for

Figure 3 shows a process execution history excerpt in

MXML standard format2. The two task instances “Check

credit worthiness” and “Approve contract” are executed by

different subjects (shown via arrow 1). In this excerpt,

“Alice” and “Susan” perform the first task (thS(Check for

credit worthiness) = {Alice, Susan}) and “Bob” performs

the second task (thS(Approve contract) = {Bob}) (shown

via arrow 2). Using the process execution history shown in

Figure 3, we can derive a candidate SME constraint defined

on these two tasks because these tasks are not performed by

the same subject.

 <ProcessInstance id="1">

 <AuditTrailEntry><WorkflowModelElement>

 Check credit worthiness</WorkflowModelElement>

 <Originator>ALICE</Originator>

 </AuditTrailEntry>

 <AuditTrailEntry><WorkflowModelElement>

 Approve contract</WorkflowModelElement>

 <Originator>BOB</Originator>

 </AuditTrailEntry></ProcessInstance>

 <ProcessInstance id="n">

 <AuditTrailEntry><WorkflowModelElement>

 Check credit worthiness</WorkflowModelElement>

 <Originator>SUSAN</Originator>

 </AuditTrailEntry>

 <AuditTrailEntry><WorkflowModelElement>

 Approve contract</WorkflowModelElement>

 <Originator>BOB</Originator>

 </AuditTrailEntry></ProcessInstance>

2)
2)

1)

1)

...

Figure 3. Example detection of SME tasks

2The detection of constraints from XES is conducted in the same way.

C. Deriving Candidate DME Constraints

We derive candidate DME constraints if two tasks are

never executed by the same subject in the same process

instance. In contrast to SME constraints, DME tasks can

be executed by the same subjects within different pro-

cess instances (see also Definition 1.8 and [3]). Therefore,

a candidate DME constraint defined on two task types

taskx, tasky ∈ TT is derived if for each process instance

pi ∈ PI and for all corresponding task instances tx, ty ∈
TI : tx ∈ ti(taskx, pi)∧ty ∈ ti(tasky, pi)∧es(tx) 6= es(ty)
applies (see Algorithm 2).

Algorithm 2 Derive candidate DME constraints

Input: TT , PI

1: for each taskx ∈ TT do
2: for each tasky ∈ TT | tasky 6= taskx do
3: for each pi ∈ PI |∀tx, ty ∈ TI :
4: tx ∈ ti(taskx, pi) ∧ ty ∈ ti(tasky, pi)∧
5: es(tx) 6= es(ty) do
6: set taskx ∈ dme(tasky) ⊲ marked as candidate

7: end for
8: end for
9: end for

Again, Figure 4 depicts a process execution history ex-

cerpt with two process instances. In Figure 4, the two task

instances “Negotiate contract” and “Approve contract” were

both performed by the same subjects “Alice” and “Bob”

(shown via arrow 1). However, in each process instance both

tasks were performed by a different subject (shown via arrow

2). Therefore, we derive a candidate DME constraint for the

tasks from Figure 4.

 <ProcessInstance id="1">

 <AuditTrailEntry><WorkflowModelElement>

 Negotiate contract</WorkflowModelElement>

 <Originator>ALICE</Originator>

 </AuditTrailEntry>

 <AuditTrailEntry><WorkflowModelElement>

 Approve contract</WorkflowModelElement>

 <Originator>BOB</Originator>

 </AuditTrailEntry></ProcessInstance>

 <ProcessInstance id="n">

 <AuditTrailEntry><WorkflowModelElement>

 Negotiate contract</WorkflowModelElement>

 <Originator>BOB</Originator>

 </AuditTrailEntry>

 <AuditTrailEntry><WorkflowModelElement>

 Approve contract</WorkflowModelElement>

 <Originator>ALICE</Originator>

 </AuditTrailEntry></ProcessInstance>

1)
1)

2)

2)

...

Figure 4. Example detection of DME tasks

D. Deriving Candidate Subject-Binding (SB) Constraints

A SB constraint defines that two (or more) subject-bound

tasks must be performed by the same subject (see also

Definition 1.9 and [3]). Two tasks taskx, tasky ∈ TT are

candidate SB tasks if for each process instance pi ∈ PI

and for all corresponding task instances tx, ty ∈ TI : tx ∈

ti(taskx, pi) ∧ ty ∈ ti(tasky, pi) ∧ es(tx) = es(ty) applies

(see Algorithm 3).

Algorithm 3 Derive candidate SB constraints

Input: TT , PI

1: for each taskx ∈ TT do
2: for each tasky ∈ TT | tasky 6= taskx do
3: for each pi ∈ PI |∀tx, ty ∈ TI :
4: tx ∈ ti(taskx, pi) ∧ ty ∈ ti(tasky, pi)∧
5: es(tx) = es(ty) do
6: set taskx ∈ sb(tasky) ⊲ marked as candidate

7: end for
8: end for
9: end for

Figure 5 depicts a process execution history excerpt

with two process instances that include the tasks “Check

credit worthiness” and “Negotiate contract”. This example

shows that both tasks are always performed by the same

subject within the same process instance (shown via arrows).

Therefore, we derive a candidate SB constraint from this

process execution history.

 <ProcessInstance id="1">

 <AuditTrailEntry><WorkflowModelElement>

 Check credit worthiness</WorkflowModelElement>

 <Originator>CLAIRE</Originator>

 </AuditTrailEntry>

 <AuditTrailEntry><WorkflowModelElement>

 Negotiate contract</WorkflowModelElement>

 <Originator>CLAIRE</Originator>

 </AuditTrailEntry></ProcessInstance>

 <ProcessInstance id="n">

 <AuditTrailEntry><WorkflowModelElement>

 Check credit worthiness</WorkflowModelElement>

 <Originator>ALICE</Originator>

 </AuditTrailEntry>

 <AuditTrailEntry><WorkflowModelElement>

 Negotiate contract</WorkflowModelElement>

 <Originator>ALICE</Originator>

 </AuditTrailEntry></ProcessInstance>

...

Figure 5. Example detection of SB tasks

E. Deriving Candidate Role-Binding (RB) Constraints

A RB constraint defines that two (or more) role-bound

tasks must always be performed by members of the same

role (see also Definition 1.10 and [3]). However, role-bound

tasks are not necessarily executed by the same subject.

To derive candidate RB constraints, the process execution

history must contain role information, i.e. information on

which role a subject has activated to execute the task. Two

tasks taskx, tasky ∈ TT are candidate RB tasks if in

each process instance pi ∈ PI and for all corresponding

task instances tx, ty ∈ TI : tx ∈ ti(taskx, pi) ∧ ty ∈
ti(tasky, pi) ∧ er(tx) = er(ty) applies (see Algorithm 4).

Typically, MXML and XES files do not contain the

executing-role of a task instance. Therefore, we cannot

derive candidate role-bound tasks directly. However, we can

derive role information from the “Organizational” extension

provided in the XES standard for process execution histories

Algorithm 4 Derive candidate RB constraints

Input: TT , PI

1: for each taskx ∈ TT do
2: for each tasky ∈ TT | tasky 6= taskx do
3: for each pi ∈ PI |∀tx, ty ∈ TI :
4: tx ∈ ti(taskx, pi) ∧ ty ∈ ti(tasky, pi)∧
5: er(tx) = er(ty) do
6: set taskx ∈ rb(tasky) ⊲ marked as candidate

7: end for
8: end for
9: end for

(see also Section III-A). Thus, we can only derive candidate

RB constraints if this organizational extension is used in a

process execution history.

 <trace><string key="concept:name" value="1"/>

 <event><string key="concept:name"

 value="Check credit worthiness"/>

 <string key="org:role" value="Clerk"/>

 </event>

 <event><string key="concept:name"

 value="Reject application"/>

 <string key="org:role" value="Clerk"/>

 </event></trace>

 <trace><string key="concept:name" value="2"/>

 <event><string key="concept:name"

 value="Check credit worthiness"/>

 <string key="org:role" value="Manager"/>

 </event>

 <event><string key="concept:name"

 value="Reject application"/>

 <string key="org:role" value="Manager"/>

 </event></trace>

...

Figure 6. Example detection of RB tasks

In Figure 6, the same role performed the tasks “Check

credit worthiness” and “Reject application” in each process

instance (shown via arrows). In the first process instance

both tasks are executed by subjects owning the role “Clerk”.

In the second process instance, these tasks are executed by

subjects owning the role “Manager”. Thus, for each process

instance subjects owning the same role execute the two tasks.

Therefore, we derive a candidate RB constraint from the

process execution history.

IV. RELATED WORK

Our work complements work from the area of process

mining, especially organizational mining. Organizational

mining aims to discover information about the relationship

between subjects and executed tasks in a PAIS (see, e.g.,

[7], [8]). Song and van der Aalst [8] introduce an approach

to mine organizational models and social structures from

process execution histories. For example, they use mining

techniques to cluster subjects into groups based on their

execution of similar tasks. Jin et al. [9] introduce an

algorithm to produce organizational models from process

execution histories. Similar to [8], Jin et al. use a similarity

measure to cluster subjects of a process execution history

into roles if they (partially) completed the same tasks in a

similar frequency. Moreover, Rembert and Ellis [13] provide

a formal definition to mine different aspects from process

execution histories. One aspect the authors present is the

role assignment perspective which captures the relationship

between roles and tasks. They introduce an algorithm to

calculate this relationship by clustering subjects using a

similarity metric.

Moreover, our approach is related to role mining. In role

mining, data mining techniques are used to detect patterns

in a set of access permissions [14]. These patterns are

used to derive candidate RBAC policy sets. Furthermore,

several approaches exist that include preexisting business

information (e.g. job or department descriptions) to create

RBAC policy sets via role mining (see [14]–[17]).

In [10], we presented a preliminary approach to derive

candidate RBAC artifacts and assignment relations from

a process execution history. This paper extends the ap-

proach of [10] and provides algorithms to derive entail-

ment constraints, such as mutual exclusion and binding

constraints, from a process execution history. Thereby, our

work complements the approaches mentioned above by con-

sidering process-related information to automatically derive

candidate RBAC models that include task-based entailment

constraints.

V. CONCLUSION

PAIS record process execution histories that contain infor-

mation about the subjects performing the tasks included in

a business process. In this paper, we presented a systematic

approach for the automated derivation of candidate RBAC

models from process execution histories. Such RBAC mod-

els specify roles, subjects, tasks/permissions, assignment

relations, as well as mutual exclusion and binding con-

straints defined on tasks. Therefore, RBAC models derived

from process execution histories can serve as a basis for

understanding how an organization actually enforces access

control policies in PAIS.

In our future work, we will examine how other types of

candidate constraints (such as context constraints) can be

derived from process execution histories.

REFERENCES

[1] M. Dumas, W. van der Aalst, and A. ter Hofstede, Process-
Aware Information Systems. John Wiley & Sons, Inc., 2005.

[2] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-
Based Access Control, Second Edition. Artech House, 2007.

[3] M. Strembeck and J. Mendling, “Modeling process-related
RBAC models with extended UML activity models,” Infor-
mation and Software Technology, vol. 53, no. 5, 2011.

[4] J. Warner and V. Atluri, “Inter-Instance Authorization Con-
straints for Secure Workflow Management,” in Proc. of the
11th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT), June 2006.

[5] M. Strembeck and J. Mendling, “Generic Algorithms for
Consistency Checking of Mutual-Exclusion and Binding Con-
straints in a Business Process Context,” in Proc. of the 18th
International Conference on Cooperative Information Systems
(CoopIS), Lecture Notes in Computer Science (LNCS), Vol.
6426, Springer, October 2010.

[6] N. Russell, W. van der Aalst, A. ter Hofstede, and D. Ed-
mond, “Workflow Resource Patterns: Identification, Repre-
sentation and Tool Support,” in Proc. of the 17th International
Conference on Advanced Information Systems Engineering
(CAiSE), Lecture Notes in Computer Science (LNCS), Vol.
3520, Springer, 2005.

[7] W. van der Aalst, H. A. Reijers, and M. Song, “Discovering
Social Networks from Event Logs,” Computer Supported
Cooperative Work (CSCW), vol. 14, no. 6, December 2005.

[8] M. Song and W. van der Aalst, “Towards comprehensive
support for organizational mining,” Decision Support Systems,
vol. 46, no. 1, 2008.

[9] T. Jin, J. Wang, and L. Wen, “Organizational Modeling from
Event logs,” in Proc. of the 6th International Conference on
Grid and Cooperative Computing (GCC). IEEE Computer
Society, 2007.

[10] A. Baumgrass, “Deriving Current-State RBAC Models from
Event Logs,” in International Workshop on Security Aspects
of Process-aware Information Systems (SAPAIS), Proc. of the
6th International Conference on Availability, Reliability and
Security (ARES). IEEE Computer Society, 2011.

[11] A. de Medeiros and C. W. Günther, “Process Mining: Using
CPN Tools to Create Test Logs for Mining Algorithms,” in
Proc. of the 6th Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, 2005.

[12] C. W. Günther, “XES Standard Definition,” 1.0, Draft. avail-
able at: http://www.xes-standard.org/, November 2009.

[13] A. J. Rembert and C. S. Ellis, “An Initial Approach to Mining
Multiple Perspectives of a Business Process,” in Proc. of
the 5th Richard Tapia Celebration of Diversity in Computing
Conference (TAPIA). ACM, 2009.

[14] L. Fuchs and S. Meier, “The Role Mining Process Model,”
in Proc. of the 6th International Conference on Availability,
Reliability and Security (ARES). IEEE Computer Security,
2011.

[15] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo,
and J. Lobo, “Mining Roles with Semantic Meanings,” in
Proc. of the 14th ACM Symposium on Access Control Models
and Technologies (SACMAT). ACM, 2008.

[16] A. Colantonio, R. Di Pietro, A. Ocello, and N. V. Verde, “A
Formal Framework to Elicit Roles with Business Meaning in
RBAC Systems,” in Proc. of the 14th ACM Symposium on
Access Control Models and Technologies (SACMAT), June
2009.

[17] C. Giblin, M. Graf, G. Karjoth, A. Wespi, I. Molloy, J. Lobo,
and S. Calo, “Towards an integrated approach to role engi-
neering,” in Proc. of the 3rd ACM workshop on Assurable and
usable security configuration (SafeConfig). ACM, 2010.

