
Investigation of Emotion Exchange Motifs in
Bot/Human Interactions during Riot Events

Ema Kušen
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Abstract—In this paper, we analyze a data-set consisting of
4.5 million tweets related to four highly emotional events and
investigate the interaction patterns that emerge when social bots
communicate with human users. In particular, we propose an
emotion-annotated n-layer multiplex network model to study the
involvement of bots in the exchange of emotional messages. To
this end, we study four events: a) the riots that happened during
the 2017 G20 summit in Hamburg, b) the 2017 Charlottesville
riot, c) the 2017 Catalonia independence referendum riot, and
d) the riots that happened after the Philadelphia Eagles won the
2018 Superbowl. In our analysis, we found that: 1) when iden-
tifying significant triadic patterns (motifs) in the the respective
communication network, a number of star-like subgraphs emerge
as representative and significant communication patterns, 2) bots
tend to send messages of a higher emotional intensity, as com-
pared to humans, 3) though bots predominantly send retweets,
they also compose original messages that may potentially harm
the reputation of the person they are targeted at, and 4) in
contrast to previous findings, we found that during riot events
up to 87.18% of the involved bots actively engage in a direct
communication with human users.

Index Terms—Emotions, Multilayer Network, Multiplex Net-
work, Network Motif, Online Social Network, Social Bot, Twitter

I. INTRODUCTION

In general, a complex network [1] represents various types
of entities as vertices (e.g. computers or people) that are
connected via edges. Depending on the network model, edges
can have different semantic meanings, also known as edge
types. For example, in an online social network (OSN) a
person can be connected to friends, co-workers, and family
members. Typically, different edge types are represented in
the form of network layers, thereby generating a multilayer
network [2]. A multiplex network is a special type of a
multilayer network and assumes that the same set of vertices
is connected via different types of edges [2].

In 2002, Milo et al. [3] proposed network motifs as statis-
tically significant and over-represented subgraphs that serve
as basic building blocks of complex networks. Since then, a
large number of studies applied the concept of motifs to study
the structural properties of predominantly biological networks,
such as cellular networks and protein interaction networks [4],
[5]. These studies have shown that motifs provide significant
insights into how small subgraph interactions form the behav-
ior on the macroscopic level of a complex network [6].

While the structural patterns emerging in biological net-
works have been a vivid area of research, the emergence of
motifs in human communication networks such as OSNs, has
generally been understudied so far.

In this paper, we focus on communication patterns that
emerge from the Twitter interaction between bot accounts and
human accounts during highly emotional events. In particular,
this paper centers around four recent riot events, namely the
riots that a) happened during the 2017 G20 summit in Ham-
burg, b) the 2017 Charlottesville riot, c) the 2017 Catalonia
independence referendum riot, and d) the riots that happened
after the Philadelphia Eagles won the 2018 Superbowl.

Previous studies have pointed to the negative influence that
bot accounts may have on the way human users perceive an
event or a particular person [7], or their tendency to manipulate
opinion formation during elections [8] and distract human
users from important news by sending spam messages [9].
In this paper, we show that bots also engage in a direct com-
munication with human users and form statistically significant
and representative subgraphs (motifs). In particular, the motifs
we found reveal that bots tend to either flood humans with
messages, begin a chain of messages, try to boost their own
influence by mentioning themselves, or attract a substantial
number of messages.

The remainder of this paper is organized as follows. In
Section II we provide an overview of related work, followed
by a brief description of the four riot events in Section III.
We outline our research method in Section IV and present our
results in Section V. Section VI provides a discussion on the
most important findings. Section VII concludes the paper.

II. RELATED WORK

Existing studies on bot behavior have predominantly pro-
vided empirical evidence on the differences between human
accounts and bot accounts by observing the social connectivity
(e.g., number of followers), the content generation rate, as
well as the topics of bot-generated OSN messages (e.g.,
news, opinion). For example, Riquelme et al. [10] found that,
compared to humans, bots tend to be passive (i.e. they don’t
actively engage in discussions with particular human users).

In recent years, studies have reported on the potential influ-
ence of bots during important events, such as political elections
or acts of war (see, e.g., [8], [11]–[16]). One such study is



presented in [11] where Abokhodair et al. studied the role of
bots in a Twitter discussion about the 2012 Syrian civil war.
The findings suggest that human users author comparatively
more tweets that express personal opinion, while bots tend to
disseminate more informative tweets (e.g. news). Moreover,
the study also suggests that bots did not aim to mimic the
human-like behavior [11]. In contrast, other studies argued
that bots are nowadays more sophisticated, can mimic human
behavior, and are hard to distinguish from human users [17]–
[19]. Some studies even found that sophisticated bots have the
ability to deceive and influence people [20].

In this context, Everett et al. [18] have shown that, in gen-
eral, messages that disagree with the public opinion increase
the likelihood of deception. This observation has been empiri-
cally demonstrated in [12], where Dickerson et al. studied the
case of the 2014 Indian elections. In their study, Dickerson et
al. found that humans tend to disagree more with the general
opinion (sentiment) when compared to bots. Moreover, the
study has also found that humans express stronger positive
sentiments than bots.

It has also been shown that bots are active during events
where they might follow a strategic agenda [16]. This includes
important events such as elections [8]. Gupta et al. [7] found
that bots are prone to spreading misinformation due to their
automatic retweeting of messages that have not gone through
fact checking. For instance, Gupta et al. found that bots were
responsible for spreading false accusations emerging after the
2013 Boston marathon bombing.

III. EVENTS OF STUDY

Our analysis is based on the four recent riot events.
The 2017 G20 riots in Hamburg. The 2017 G20 summit

took place on July 7-8, 2017 in Hamburg, Germany. About
a week before the summit, minor clashes occurred between
the protesters and the local police. The day before the summit
(July 6th), 8,000 protesters gathered in a so-called “Welcome
to Hell” march which escalated in violent confrontations
between the protesters and the local police, leaving 14 injured
demonstrators and 76 injured police officers. The first day of
the G20 summit (July 7th) was met with further acts of civil
unrest, with the protesters setting cars on fire, looting shops,
and clashing with the local police. In the aftermath, 160 police
officers were reported injured1.

The 2017 “Unite the Right Rally” in Charlottesville. The
2017 Charlottesville (Virginia) riots, also called the “Unite the
Right Rally”, happened on August 11-12, 2017 as a response
to the City Council’s vote to rename two parks previously
named after Confederate generals and remove the statue of the
confederate general Robert E. Lee2. As the protesters marched
the city they were met by the counter-protesters. Fights broke
out between the two groups leaving 14 injured. On Saturday,

1Hamburg: https://www.theguardian.com/world/2017/jul/07/g20-protests-
hamburg-altona-messehalle

2Charlottesville: https://edition.cnn.com/2017/08/14/us/charlottesville-rally
-timeline-tick-tock

August 12th, a man deliberately drove into a crowd with his
car, killing one person and injuring 193.

The 2017 Catalonia independence referendum riots. The
Catalonia independence referendum was held on October 1st,
2017 in Catalonia, a region in the north east of Spain. Though
with a low turnout (43.32%), the referendum resulted in 92.1%
of votes in favor of splitting Catalonia from Spain. During
the referendum, the Spanish national police tried to prevent
people from voting4. The clashes with the police resulted in
about 900 people injured. As a response, about 15 thousand
demonstrators gathered in Barcelona on October 3rd, 20175

as a sign of a protest against the police violence.
The 2018 Superbowl riots in Philadelphia. Superbowl

LII was played on February 4, 2018. The Philadelphia Eagles
beat the New England Patriots 41:33. On February 5, 2018,
thousands of Eagles fans gathered on the streets of Philadel-
phia to celebrate the victory. However, the celebration evolved
into a series of acts of vandalism and a riot, with people
flipping over cars, attempting to tear down traffic lights and
lamp post, and setting objects on fire6. The Philadelphia police
called in additional support from the US National Guard. One
police officer ended up injured while several rioters requested
medical help.

IV. METHOD

Data extraction. We used Twitter’s Search API7 to extract
publicly available data related to the four riot events (see
Section III). Each of the extraction procedures started the
day when the riot happened and stopped about a week later.
We restricted our data extraction to tweets written in English
language (Charlottesville, Catalonia, Hamburg, and Philadel-
phia riots) and German language (Hamburg riots). In total,
we collected 4,519,152 unique tweets authored by 1,698,701
Twitter users (see Table I).

Emotion detection. Next, we pre-processed the data and
identified the presence and the intensity of the eight basic emo-
tions according to Plutchik’s wheel of emotions [21] (anger,
fear, sadness, disgust, joy, trust, anticipation, and surprise). To
identify emotions, we applied our emotion detection algorithm
(see [22]) which uses the NRC8 lexicon, the AFINN lexicon
of affect [23] (contains scores between [-5,5] to increase or
decrease an intensity of a particular emotion-carrier word), as
well as a set of heuristics that humans naturally use when

3Charlottesville: https://edition.cnn.com/2017/08/12/us/charlottesville-
white-nationalists-rally

4Catalonia: https://www.nytimes.com/2017/10/01/world/europe/catalonia-
independence-referendum.html

5Catalonia: https://www.theguardian.com/world/2017/oct/03/catalonia-
holds-general-strike-protest-referendum-violence

6Philadelphia: http://www.bbc.com/news/world-us-canada-42943824
7For our data extraction, we used the following list of hashtags and search

terms. Hamburg: #G20HH2017, #G20Hamburg, #G20HAM17, #G20HAM,
“#G20 #Hamburg”, “Hamburg riot”, “Hamburg Unruhe”; Charlottesville:
#Charlottesville, #UnitetheRight, “Charlottesville riot”; Catalonia: #Catalo-
nia, #CatalanReferendum, #RepublicofCatalonia, “Catalonia violence”, “Cat-
alonia protest”, “#1oct Catalonia”; Philadelphia: #PhillyBurning, #Phillyriot,
“#superbowl #Philadelphia”, “#Philadelphia #riot”, and “Philadelphia riot”.

8NRC: http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm



Hamburg Charlottesville Catalonia Philadelphia
Period 6.7-17.7 2017 10.8-16.8 2017 28.9-16.10 2017 4.2-10.2 2018
Tweets 653,568 2,202,682 1,640,829 22,073
Users 178,879 1,020,729 487,152 11,941
Bots 2,841 3,004 3,703 129

Vertices 982 (286) 5,550 (2,619) 1,071 (281) 6 (3)
Edges 1,100 3,335 5,091 3

TABLE I
BASIC INFORMATION ABOUT EACH DATA-SET: PERIOD OF DATA

EXTRACTION, NUMBER OF UNIQUE TWEETS (AFTER THE DOUBLES
REMOVAL), UNIQUE USERS, AND IDENTIFIED BOTS. THE NUMBERS OF
VERTICES AND EDGES ARE BASED ON THE SUBSET OF BOT VERTICES

THAT ARE ENGAGED IN A COMMUNICATION (VIA @SCREENNAME) WITH
ANOTHER VERTEX (EITHER BOT OR HUMAN). THE NUMBERS IN

BRACKETS SHOW THE NUMBER OF BOT VERTICES PARTICIPATING IN A
DIRECT TWITTER COMMUNICATION (VIA @SCREENNAME).

assessing emotions in written texts. This particular set of
heuristics was identified in previous scientific studies (see, e.g.,
[24]–[28]) and considers negation, misspellings, downtoners,
boosters, amplifiers, maximizers, smileys, as well as common
abbreviations.

Bot detection. For bot identification we used Botometer’s
Python API9. Botometer relies on a number of features
associated with a Twitter account, such as the content of
a tweet, friendship network, sentiments conveyed in tweets,
temporal tweeting behavior, and user meta data [29]. A bot-
score assigned by Botometer is the likelihood of a Twitter
account to be controlled by a bot, ranging from 0 (definitely
a human account) to 1 (definitely a bot account). In total,
we processed 1,698,701 unique screen names. Following the
procedure proposed in [30], we classified accounts as bots if
the bot likelihood score assigned by Botometer was larger than
0.6. In total, we identified 9,548 bots that participated in the
Twitter discourse about the riot events (see Table I).

Reconstructing the bot-focused communication network.
On Twitter, a user can directly communicate with another user
by using the @ symbol followed by the receiver’s screen
name (@screenname). For our analysis, we first excluded
all retweets (a retweet typically begins with the string “RT
@+author’s screenname”). By following the @-traces from
the remaining tweets, we reconstructed a directed commu-
nication network for each of the four events (see Section
III). Apart from the source’s and the target’s screenname,
we also preserved the bot score for each of the vertices
participating in the network and the corresponding dominant
emotion communicated between two Twitter users as an edge
attribute. Since this paper focuses on the emotion-exchange
patterns that emerge in Twitter interactions which involve bot
accounts, we subset the network with respect to bot vertices.
The subset we analyze in-depth thus includes bots as well as
those human vertices that are adjacent to bot vertices.

Modeling the interaction network as a multiplex net-
work. For our analysis, we regard each emotion communicated
between pairs of vertices as an own edge type. Thus, we
model a multiplex network that consists of eight layers, each
layer corresponding to one emotion in Plutchik’s wheel of

9Botometer: https://botometer.iuni.iu.edu/

emotions (anger, fear, sadness, disgust, joy, trust, anticipation,
and surprise).

Motif detection. Next, we identified the resulting network
motifs by applying the following steps (see also Algorithm 1):

1) apply the ESU [31] motif enumeration algorithm which
enumerates all possible subgraphs of a particular size k
(in this paper k = 3),

2) apply VF2 isomorphism testing [32] for each pair of
subgraphs,

3) isomorphism classification,
4) construction of synthetically generated random networks

(null models) which resemble the input network. For the
purposes of this paper, we applied the stub-matching
algorithm [33], [34]. We generated 300 null models10

for each network,
5) enumerate and classify subgraphs in all null models, and
6) identify motifs by applying the Z-score measure and p-

value, as well as construct a significance profile (SP )
for each network [2].

In our analyses, we then enumerate all subgraphs in:

a) each of the eight emotion layers individually,
b) two aggregated valence layers for positive and negative

emotions respectively (i.e. an aggregated layer consisting
of the positive emotion layers joy, anticipation, trust, as
well as an aggregated layer consisting of the negative
emotion layers anger, fear, sadness, disgust),

c) a valence interlayer (i.e. the edges shared between the set
of common nodes in the two aggregated valence layers
for positive and negative emotions),

d) an aggregated network over all eight emotion layers.

The individual layers and the derived layers are sketched in
Figure 1. Note that surprise (the yellow layer) is handled sep-
arately, because surprise might be both, negative or positive,
depending on the context.

a) Individual layers b) Aggregated valence

layers

c) Valence interlayer d) Aggregated network

Fig. 1. Individual emotion-annotated layers and the corresponding derived
layers used in our analyses (green = positive emotion layers, red = negative
emotion layers, yellow = surprise).

10In order to determine if a network motif (i.e. a statistically significant
and over-represented subgraph) has semantic meaning and results from the
communication patterns in a real-world network, we have to make sure that it
does not appear by chance. Thus, we generated null models and checked if the
motifs found in the real-world network are also found in the corresponding
null models. If the motifs appear significantly more often in the real-world
network, they most likely result from the real-world communication patterns
rather than from a chance process (see, e.g., [2], [3], [35]). Note that some
papers argue that generating 200 null models is sufficient [35].



Algorithm 1: Motif detection.
1 Input: input network;
2 Output: list of motifs = [];
3 Initialize: i = 0;
4 # ENUMERATE AND CLASSIFY SUBGRAPHS
5 def procedure: esu vf2(list layers)
6 foreach l in list layers do
7 subgraphs = esu(l)
8 foreach s in subgraphs do
9 subgraphs’ = subgraphs \ s

10 foreach s’ in subgraphs’ do
11 if vf2(s, s’) then
12 assign common isomorphism class
13 subgraphs’ = subgraphs’ \ s’
14 subgraphs = subgraphs \ s’
15 end
16 end
17 end
18 end
19 end procedure
20 # GENERATE LAYERS AND INTER-LAYERS
21 detect layers in input network
22 layer negative.add edges from(layer anger, layer sadness, layer disgust,

layer fear)
23 layer positive.add edges from(layer joy, layer anticipation, layer trust)
24 foreach i in range(length(V(input network))) do
25 if vi ∈ V(layer negative) & vi ∈ V(layer positive) then
26 inter layer.add edges from(layer negative.edge containing(vi),

layer positive.edge containing(vi))
27 end
28 end
29 list layers = [layer anger, layer joy, ... , layer surprise, layer negative,

layer positive, interlayer, input network]
30 esu vf2(list layers)
31 # GENERATE NULL MODELS
32 while i < 300 do
33 foreach l ∈ list layers do
34 null[l] = matching(l.in degree(), l.outdegree())
35 end
36 esu vf2(null)
37 i = i+1
38 end

In total, we generated 300 null models (synthetic random
networks) corresponding to the eight emotion-annotated lay-
ers, the two valence aggregated layers, the valence interlayer,
and the aggregated network for each of the four riot events.
This resulted in 14,400 null models that went through the
motif detection procedure. The emotion extraction as well as
the motif identification procedures have been performed on
a machine with Intel Xeon CPU E3-1240 v5 @ 3.5GHz (8
threads) and 32 GB RAM.

V. RESULTS

A. Overall emotionality during riots

As riots are highly emotional events, we first analyzed
the overall intensities of different emotions during the four
events. As shown in Figure 2, two emotions are particularly
dominant across all four riot events, namely anger and fear.
We also tested for the effects of retweets (copies of a tweet
disseminated by Twitter users) in our data-set and found that
retweets consistently amplified fear across all four riot events.

Some examples of messages expressing fear and anger from
our data-set:

“RT @screenname: Remember this? I sure as hell
do. Where are the police and their riot gear now?!?
#Charlottesville”,

“Now a helicopter crashed near the white supremacy
Nazi march in #Charlottesville... It’s complete chaos
out there today.”,
“RT @screenname: #Tarragona #1Oct #Catalonia
One of the injured was attacked again on his way
to an ambulance (by Spanish riot cops)!”
“RT @screenname: #NoG20 #Hamburg: Cops lost
control over parts of the city.”
“RT @screenname: Hamburg: ANTIFA tears apart a
sidewalk - so they can throw it at police. #G20HAM
#G20Summit.”

Next, we examine to which extent bots contribute to the
overall perceived emotionality of the four events. We con-
ducted Welch’s two sample t-test with a 0.95 confidence level
to examine whether there is any statistically significant differ-
ence in the intensities of emotions communicated by bot and
human accounts. The results presented in Table II show that
bots tend to disseminate messages that are emotionally more
intense as compared to human accounts. This is particularly
evident during the Charlottesville and Philadelphia riots.

In terms of content generation, a Twitter user may author
an original tweet or disseminate copies of existing tweets
(retweets). In our analysis, we found that most of the bot-
generated content is attributed to retweets (Hamburg 57%,
Charlottesville 65.98%, Catalonia 70.72%), with the exception
of tweets related to the Philadelphia riots (38.89% retweets in
related bot-generated messages). Bot-generated tweets related
to the Philadelphia riots contained a substantial number of
bot-authored spam messages (27%), such as: “8 positive rules
of Life <3 #PositiveVibes #Philadelphia” or “I am looking
for a man who wants to see a responsible and serious
woman beside him. Free registration #SuperBowlChamps”,
news tweets (18%), as well as rumors (6%), such as “I’m
embarrassed to see a video of a man in Philly eating horse
defecation (yes, for real) and a crowd of people cheer.”.

Furthermore, it is worth mentioning that in the four events
we studied, similar content-generation patterns hold for hu-
man accounts who also predominantly disseminated retweets
(Hamburg 79%, Charlottesville 87.53%, Catalonia 90.79%,
Philadelphia 74.36%).

Next, we examine the temporal flow of aggregated positive
and aggregated negative emotions communicated by bot and
human accounts. Figure 3 shows the negative and positive
emotions communicated by human accounts via red and green
solid lines respectively, while emotions communicated by
bots are depicted via red dots (negative emotions) and green
triangles (positive emotions). As shown in Figure 3, negative
emotion peaks are predominantly attributed to bot accounts,
suggesting that bots tend to amplify the perceived negative
emotionality of an event.

While previous studies suggested that bots do not tend to
engage in direct interactions with the human users (see, e.g.,
[10]), our data-sets show that such interactions indeed happen
in certain events. In particular, the Charlottesville data-set
exhibits a substantial number of bots participating in a direct



a) Hamburg b) Charlottesville c) Catalonia d) Philadelphia

Fig. 2. Presence and intensity of emotions (sorted alphabetically) during the four riot events. Positive emotions (anticipation, joy, trust) are shown in green,
negative (anger, disgust, fear, sadness) in red, and surprise in yellow. The effects of retweets are shown via a black arrow-head.

Hamburg Charlottesville Catalonia Philadelphia
Anger µB=0.63, µH=0.48, t=9.98* µB=1.34, µH=1.1, t=12.39* µB=1.44, µH=1.48, t=2.91* µB=1.34, µH=1.1, t=12.39*
Fear µB=0.62, µH=0.48, t=8.44* µB=1.38, µH=1.27, t=5.78* µB=1.74, µH=1.95, t=10.74* µB=1.38, µH=1.26, t=5.78*

Sadness µB=0.21, µH=0.22 µB=1.1, µH=0.92, t=9.36* µB=1.12, µH=1.09 µB=1.1, µH=0.91, t=9.36*
Disgust µB=0.16, µH=0.18 µB=0.72, µH=0.55, t=12.39* µB=0.29, µH=0.32, t=4.26* µB=0.72, µH=0.55, t=12.39*

Joy µB=0.17, µH=0.18 µB=0.51, µH=0.49 µB=0.53, µH=0.49, t=3.87* µB=0.51, µH=0.5
Trust µB=0.37, µH=0.35 µB=0.86, µH=0.81, t=4.84* µB=1.1, µH=1.19, t=7.83* µB=0.86, µH=0.81, t=4.84*

Anticipation µB=0.24, µH=0.25 µB=0.59, µH=0.56, t=3.14* µB=0.64, µH=0.62, t=2.86* µB=0.59, µH=0.56, t=3.14*
Surprise µB=0.23, µH=0.26, t=2.57* µB=0.5, µH=0.42, t=8.63* µB=0.56, µH=0.55 µB=0.5, µH=0.42, t=8.63*

TABLE II
EMOTION INTENSITIES COMMUNICATED BY BOT AND HUMAN ACCOUNTS (µB REPRESENTS A MEAN EMOTION SCORE COMMUNICATED BY BOT

ACCOUNTS, µH REPRESENTS A MEAN EMOTION SCORE COMMUNICATED BY HUMAN ACCOUNTS). RESULTS OF THE T-TEST ARE SHOWN FOR THE
CONFIDENCE LEVEL *0.95.

Date Date Date Date
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a) Hamburg b) Charlottesville c) Catalonia d) Philadelphia

Fig. 3. Temporal flow of positive (green) and negative (red) emotions during the four riot events (emotions spread by human accounts are presented via solid
lines, negative emotions spread by bots via red dots, and positive emotions spread by bots via green triangles).

message exchange with human users (87.18%), while the
remaining data-sets count between 2.33%-10.07% of bots that
engaged in a direct communication with human users. Given
such a high involvement of bots in a direct communication
with human accounts, the question remains which structural
patterns emerge due to the bots’ engagement in direct message
exchanges.

B. Emotion exchange motifs

For motif identification, we reconstructed a directed com-
munication network by following the @-traces in the tweets
(excluding retweets) for each event. To examine the role
of bots in the corresponding communication network, we

extracted a subnetwork which contained all participating bot
vertices as well as their adjacent human accounts. As sum-
marized in Table I, the bot-focused communication network
reconstructed from the Philadelphia riot data-set resulted in a
network consisting of only three edges. For the remainder of
our analysis, we therefore focus on the remaining three data-
sets.

As shown in Figure 4, the emotions exchanged between
bot and human accounts are comparable across the three
events. In particular, we observe a dominance of anger, fear,
and anticipation across all three riot events. To measure the
similarity between the networks with respect to the com-
municated emotions, we use Kendall’s τ rank correlation



HAMBURG

CHARLOTTESVILLE

CATALONIA

Fig. 4. Emotions communicated in the bot-focused communication networks

coefficient. We found that the communication network re-
constructed from the Hamburg data-set strongly correlates
with the one reconstructed from Charlottesville and Catalonia
data-sets (τH−CHA = 0.71, τH−CAT = 0.71), while the
correlation drops to a moderate τCAT−CHA = 0.57 between
the communication networks resulting from the Catalonia and
Charlottesville events.

After finding that there is a positive correlation regarding the
emotions communicated during the three riot events, we next
examine whether the corresponding communication networks
are also similar on a structural level.

To this end, we enumerated all 3-node subgraphs and
analyzed them for their significance in the input network with
respect to the null models. As a result, we identified in total 38
different isomorphic classes that are considered motifs (25 in
the Charlottesville data-set, 18 in the Catalonia data-set, and
7 in the Hamburg data-set). Of the 38 classes, ten appear in
at least two data-sets and are thus considered common motifs
in the bot-focused communication networks (Table III).

When comparing multiple networks with respect to their
motifs, a motif significance profile (SP) is used to normalize
the Z-scores of a set of motifs m1,m2, ...,mk [2]:

SP (mi) =
Z(mi)√∑n
i=1 Z(mi)2

.

The significance profile of the motifs identified in the three
bot-focused communication networks is shown in Figure 5
(the layers in which a particular motif has been identified are
color-coded and label-annotated).

When disregarding the edge density in the common motifs,
the motifs can be classified as either in-star, out-star, or chain
triadic patterns. While other studies pointed to the presence
of additional triadic patterns, such as transitive triads [36] or
triads with reciprocal edges, no such common patterns have
been found in our analysis.

The common motifs we found predominantly take over a
configuration of various star-like configurations (see Table III).
In particular, these are triadic in-stars (IDs C1-C3, C5-C7) and
out-stars (IDs C4 and C10), whereby the out-star motifs are
denser than the in-star motifs (on average 4.83 in-star edges
and 6.5 out-star edges). Moreover, we identified two chain
triadic motifs (the motifs with the IDs C8 and C9 in Table III).

When comparing the role of bots in the motifs, we observed a
predominantly higher out-degree (message sending behavior)
of the bot nodes (average out-degree 3, while human nodes
exhibit an average out-degree of 1.9).

With respect to the different emotion layers, the motifs were
especially identified on the valence-interlayer, signaling that
when communicating with a bot, characteristic patterns emerge
as accounts exchange disparate emotions belonging to both
positive and negative valence.

ID Common motifs ID Common motifs

C1 3 4 C6 3

C2 3 2 C7 2 2

C3 4 2 C8 3

C4 3 3 C9 2

C5 2 C10 3 4

TABLE III
COMMON MOTIFS IDENTIFIED IN BOT-FOCUSED COMMUNICATION

NETWORKS. DARK BLUE NODES DEPICT THE POSITION OF A BOT IN A
MOTIF (> 50%). ALL MOTIFS IDENTIFIED FOR p < 0.05.

In addition to the common motifs, Table IV shows character-
istic event-specific motifs, i.e. motifs that emerge only in one
specific riot event. The role of bots is again depicted in dark
blue, showing that bots regularly form self-loops (mention
themselves). Such motifs (ID S1) were found on the trust
layer (SP = 0.00004) and interlayer (SP = 0.00005) in
the Charlottesville data-set. Motif S2 shows a bot engaging
in a reciprocal message exchange with a human user (found
in the Catalonia data-set, aggregated layer (SP = 0.013)).
Moreover, bots may form transitive triads (motif ID S3 found
in the interlayer (SP = 0.003) of the Hamburg data-set and
ID S4 found in the Charlottesville data-set on the aggregated
layer (SP = 0.001) and negative layer (SP = 0.0001)).

VI. DISCUSSION

By studying bot behavior during four riot events, we found
that bots considerably contribute to the overall perceived
emotionality of an event. In particular, while studying the
temporal evolution of emotions, we found that bots especially
amplify negative emotions. While such an augmentation of
negativity can result from retweeting messages that convey
negative emotions, bots in our data-sets actually authored and
disseminated original content. Though a substantial portion of
such content is spam, we found empirical evidence of bots also
spreading rumors. This observation is in line with the existing
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Fig. 5. Motif significance profile for the communication networks).

ID Specific motifs ID Specific motifs

S1 S3
2

S2 22 S4 3

TABLE IV
EVENT-SPECIFIC MOTIFS IDENTIFIED IN BOT-FOCUSED COMMUNICATION

NETWORKS. DARK BLUE NODES DEPICT THE POSITION OF A BOT IN A
MOTIF (> 50%). ALL MOTIFS IDENTIFIED FOR p < 0.05.

literature. For example, [7] suggested that bots are prone to
spreading misinformation due to their inability to assess the
credibility of the corresponding sources. For example, we
found messages such as “Philadelphia police looking for help
identifying rioters. I know two of them! Guy on right, 17
is NAME” or “@screenname NAME’s son marches with the
protesters! #G20 #g20ham17”11, which may potentially harm
the reputation of the publicly named person.

In our data-sets we further found that on occasion bots
actively engage in a one-to-one message exchange with other
Twitter users. In our Charlottesville data-set, the number of
such proactive bots is as high as 87.18%, revealing that bots
in the data-set predominantly interacted with human users.

Upon dissecting the bot-focused communication network
into triadic patterns, we identified various motifs (statistically
significant and representative patterns). In particular, the motifs
we found reveal the tendency of bots to either flood human
users with messages (motif IDs C1-C4, C6-C8, S4), mention
themselves (ID S1), or participate in a messaging chain (ID
C8, C9), thus potentially flooding human users with irrelevant

11Please note that we anonymized the tweets by replacing the actual names
mentioned in the tweets with NAME.

spam, influencing human users by occupying their attention,
or spreading rumors.

VII. CONCLUSION

As online social networks (OSNs) have become a vital part
of our society, it also becomes more important to understand
OSN-based communication. Aside from numerous positive
aspects, OSNs also have potentially negative effects on their
users, ranging from manipulation and voter’s opinion swaying
during elections to malicious spreading of misinformation (see,
e.g., [17], [37]). Among the culprits responsible for these
negative effects are automated accounts (social bots). Previ-
ous studies have predominantly focused on various aspects
distinguishing bots from human users in order to successfully
detect bots, while other studies provided empirical evidence
of the negative influence of such automated accounts.

In contrast to related studies which suggested that bots tend
to be passive, we found that in certain events bots engage in
a direct communication with human accounts. Our analysis
is based on four highly emotional events, namely the 2017
G20 riot in Hamburg, the 2017 Charlottesville riot, the 2017
Catalonia referendum riot, and the 2018 Superbowl riot in
Philadelphia.

To date, there is a lack of studies that investigate structural
patterns emerging from the direct communication of bots and
human users. Because emotions are one of the most prominent
drivers of human interactions [38], we focused our analysis
on the structural patterns that emerge as bots communicate
emotions with humans. In particular, we proposed a multiplex
network consisting of eight layers, corresponding to Plutchik’s
eight basic emotions. In our motif detection procedure, we
investigated eight individual emotion layers (anger, disgust,
fear, sadness, joy, trust, anticipation, surprise), two aggregated
valence-based layers (positive and negative), one interlayer
network, as well as an overall aggregated network.



Our findings suggest that as bots communicate emotions
to human users, specific significant triadic subgraphs (motifs)
emerge. The motifs we found include predominantly star-
like structures, with a presence of self-loops. Interestingly, we
found that motifs especially emerge on the interlayer between
the positive and negative valence layer networks, meaning that
significant triadic patterns are formed when bots and humans
exchange mixed emotions.

In our future work, we plan to further study the emergence
of motifs in OSNs and focus specifically on the motifs in
emotion-annotated multilayer networks.
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