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Abstract—In this paper, we present an analysis of 36,685 tweets
related to the 2020 Vienna terror attack. We used a Convolutional
Neural Network (CNN) approach to identify hateful and non-
hateful tweets. Our findings indicate that users who post hateful
content are predominantly anonymous. Moreover, we found that
hateful messages can spread widely across the network and that
hateful communication forms characteristic structural patterns.

Index Terms—Hate Speech, Machine Learning, Network Mo-
tifs, Neural Network, Twitter, Terrorist Attack

I. INTRODUCTION

On November 2nd 2020 at 8:00pm, the Vienna police
received an emergency call about a man firing shots and
attacking by-passers in a restaurant district close to the inner
city. The police soon arrived on the scene and the attacker was
shot dead at 8:09pm while the police continued searching for
other perpetrators. It was later confirmed that a single attacker,
a 20-year old ISIS-supporter who was born and raised in
Austria, was responsible for the attack. Before being stopped
by the police, the attacker killed four people and injured 23
more. In the aftermath, many others have been struggling
with psychological trauma. In the following days, the police
extended their search for the perpetrator’s network and arrested
suspects in Austria and Germany.

In this paper, we analyze a data-set consisting of 36,685
tweets related to the 2020 Vienna terror attack. We investigate
the dissemination of hateful messages on Twitter during the
terror attack and in its immediate aftermath. In particular, we
analyze the communication structures (network motifs) that
arise from direct messaging on Twitter and their temporal
characteristics.

While there is the right for freedom of speech (even if the
content of a message is hateful), hate speech is considered
dangerous [20] because of its frequent occurrence [24] and
because of the significant impact such messages have on those
who are targeted by it [8].

For the purposes of our analysis, we follow a definition
which describes hate speech as content that aims to seriously
disparage or attack individuals or groups based on some
protected characteristics which include race, color, ethnicity,
gender, sexual orientation, nationality, and religion (see [13],
[17], [22], [28], [30], [35], [39]).

The remainder of this paper is organized as follows. In
Section II, we give an overview of related work. Section

III outlines the research procedure before our findings are
presented in Section IV and discussed in Section V. Section
VI concludes the paper.

II. RELATED WORK

A. Hate speech detection approaches

Profane words are one of the main indicators of hate speech,
while so called cyber-bullying words might further improve
the detection of hate speech [10].

One approach for hate speech detection relies on the Bag-
Of-Words (BOW) technique that uses a pre-defined word
corpus [5], [7]. However, [7] found that this approach leads to
a low accuracy and a high false positive rate. To address this
limitation, [27], [7], and [31] suggested the use of n-grams. In
[18], the most accurate classification was reached by using a
combination of word unigrams, Part-Of-Speech (POS) tagging,
and emoji features.

When it comes to machine learning models that predict
whether a message is hateful or not, [31] evaluated logistic
regression, Support Vector Machines (SVM), random forests,
and gradient boosting. They found that the SVM performed
best with a true positive rate of 89.4%. Similar accuracy
was also reported in [2] where SVMs in combination with
term frequency–inverse document frequency (TF-IDF), char
quad-grams, word unigrams, number of positive and offensive
words, and the proportion of positive and offensive words
reached an F1-measure of 85% . Moreover, [19] found that
SVMs are able to outperform the logistic regression approach.
A study performed by Ibrohim et al. [18] compared logistic
regression, random forest decision trees, and SVMs. In their
study, the logistic regression was found to outperform the other
approaches.

Besides the approaches mentioned above, deep learning
models have also been used to identify hate speech. For
example, [19] uses word embeddings for pre-training models
before testing the performance of traditional machine learning
models, i.e., SVM and logistic regression, against deep neural
network models (a Convolutional Neural Network (CNN) and
a Gated Recurrent Unit Neural Network (GRU)). While the
SVM outperformed the logistic regression and reached an
accuracy of 65.10%, the CNN reached an accuracy of 83.04%.
Badjatiya et al. [3] found that neural network approaches
perform better than SVMs, logistic regression, and Gradient



Fig. 1. Research procedure.

Boosting Decision Trees, while they consider CNNs to be the
best approach in their study.

B. Characteristics of hate speech and its spreaders

Dadvar et al. [10] found that users who frequently published
hateful content in the past are also more likely to publish
hateful content in the future when compared to other users. In
[1], Arango et al. found that the followers of a user, his/her
subscriptions, as well as likes serve as good indicators of the
likelihood of publishing hateful content. Another study [9]
reported that juveniles between 13 and 16 are most likely to
spread hateful content on YouTube, and that male users are
more likely to post hateful or offensive content than female
users. Such users also mostly try to hide their real identity
[11].

Chakraborty et al. [6] found that the tweets authored by
abusive users are re-posted with a lower likelihood and that
the abusive users tag their friends less frequently in their
messages. In addition, abusive messages include more URLs
and hashtags than non-abusive tweets, and tweets of the same
(abusive) user have a similar content [6]. Chetty and Alathur
[8] report that the proportion of people responsible for hate
speech on platforms is low, while the impact of those few
people can be considerable.

Intentional misspelling, the use of informal abbreviations,
or short forms of a word are frequently used to avoid the
detection by standard filters against offensive language [11],
[32], [37]. Moreover, users who spread hateful content are
more likely to post shorter comments compared to other users
[6].

III. RESEARCH PROCEDURE

For our analysis, we defined the following research ques-
tions (RQ):

• RQ1: What are the characteristics of hate speech on
Twitter during the 2020 Vienna terror attack? This
RQ examines the temporal flow of hateful messages, their
content, as well as user reactions to hate speech.

• RQ2: What are the characteristics of the main spread-
ers of hate? In this RQ, we focus on the anonymity of the
message spreaders and their content creation (tweeting)
rate.

• RQ3: How does hate disseminate over Twitter? This
RQ examines the retweeting of hateful messages, as
well as the properties of the resulting hate-exchange
network and the characteristic patterns (network motifs)
that emerge in the respective communication networks.

Our research procedure includes five steps (see Figure 1).

Data extraction. We used Twitter’s Search API to ex-
tract tweets written in English language using a set of key-
words and hashtags related to the event. The key-words and
hashtags we used are “#viennaterror”, “viennaterror”, “#vi-
ennaterrorattack”, “viennaterrorattack”, “#viennaterrorist”,
“viennaterrorist”, “#terroristattackvienna”, “terroristattack-
vienna”, “#viennaattack”, “viennaattack”. The data extrac-
tion started on the November 2 and stopped on November 11.

Data pre-processing. After collecting the data, we removed
tweets that only contain URLs, resulting in a data-set including
36,685 unique tweets. We also cleaned up redundant blank
spaces, carriage returns, line feeds, and stop words. In addition,
we stemmed the words.

Hate speech detection. We used three techniques for hate
speech detection: 1) a lexicon approach, 2) a support vector
machine (SVM) classifier, and 3) a deep learning approach.

1) The lexicon approach uses a compilation of existing
dictionaries, including a list of words banned by Google
[14], a list of swear words published by NoSwearing
[29], a list of offensive words published by the Carnegie
Mellon University [36], a data-set from Davidson et al.
adapted from Hatebase [12], a data-set on hate speech
from Mathew et al. [21], and the Hatebase list of words
[16]. Moreover, we adapted the dictionaries by removing
the terms “attack”, “terror”, “terrorist”, “dead”, “kill”,
and “killed” because in our case these terms are regarded
as general terms and might therefore lead to an incorrect
classification of hate speech. Prior to applying a lexicon
approach, we stemmed the lexicon entries. The final list
of entries counts 2,483 stemmed terms.

2) For the SVM approach, we used Python scikit-learn for
deriving the SVM labels. We considered the following
features to train our classifier – BOW, TF-IDF approach
for unigrams, bigrams, trigrams, and POS tags. We
trained the classifier with a linear and sigmoid kernel
but only report on the accuracy scores for the sigmoid
kernel since it achieved a higher accuracy.

3) For the Convolutional Neural Network (CNN), we used
the Tensorflow package for R [33], with random embed-
dings as well as GloVe embeddings as input features.
One convolutional layer of 512 filters with kernel size
3 was used before applying an average pooling layer.

To train and evaluate the models, a portion of the data-
set was first labelled manually by three independent human
annotators. We selected 1000 (2.7%) randomly chosen tweets
(excluding retweets) for the manual labeling procedure and
removed 99 tweets in the pre-test phase (these tweets were
text-wise duplicated entries that only differed in the screen-



Label Absolute Frequency Relative Frequency

1 (Hate Speech) 147 0.17

0 (Non-Hate Speech) 732 0.83
TABLE I

LABELLING OF THE TRAINING DATA.

name of a user mentioned in the tweet). The annotators were
given the task to label the remaining 901 randomly selected
tweets as either hate speech (1) or non-hate speech (0). We
instructed the annotators to label tweets as hate speech if the
message:

• is directed towards an individual or a group of individuals,
• aims to seriously disparage or attack the other(s) by abus-

ing the target using profane words, emotionally harming
the target or inciting harm and promoting or justifying
intolerance or violence against the target, and

• conveys abuse which is related to some protected char-
acteristics (e.g., race, color, ethnicity, gender, sexual
orientation, nationality, religion, disability).

Some example tweets that have been labeled as hate speech
read: “All Muslims are terrorists!”, “Fu**ing Muslims!”,
“Refugees cause terrorism! Send them home!”. Some exam-
ple tweets that have not been labeled as hate speech read:
“Islamist Terror is our common enemy!”, “Terrorism is a blot
on humanity.”, “We need to fight against islamist terrorism!”1.

After the labelling procedure was complete, we resolved
any remaining annotator discrepancies. For 22 messages, the
context was unclear as there was a picture or a video attached
to the comment which was not extracted via the Search API.
Therefore, these 22 comments have been removed from the
data-set. This resulted in a total of 879 comments used for
the training data-set. The pair-wise average rater agreement
score (Cohen’s Kappa) was a decent κ = 0.77. We applied a
majority vote to finally label tweets as either hate speech or
non-hate speech (see Table I).

We used the holdout cross-validation method with 80%
of data for training and 20% for testing [19], [27]. We
applied the three models (lexicon, SVM with a sigmoid kernel,
convolutional neural networks (CNN)) on the labelled data and
report on the achieved accuracy in Table II.

Re-construction of the direct messaging network. The
convolutional neural network (CNN) with random embedding
achieved the highest accuracy and was therefore used in our
analysis to predict the labels for the remaining data-set. After
removing retweets, we re-constructed the direct messaging
network to be able to analyze the messaging behavior between
senders and receivers. This resulted in two networks – one that

1A note: Special distinction is hereby set on the protected characteristics.
While blaming is evident in the example tweets (in this case against Islamic
terrorists), the tweet does not contain hate speech. However, those tweets that
spread hatred about certain individuals, nations, or religions are considered
hate speech. Moreover, we also found that anger and blame were directed at
Austrian politicians or the president of Turkey (e.g., “This is Erdogan’s fault!
He let these terrorists in!!! #boycottturkey”). The annotators did not consider
these messages as hate speech because they are not related to some protected
characteristic of the person targeted in the tweet.

Model Features Accuracy

lexicon - 0.5654
SVM BOW with unigrams 0.8239
SVM BOW with bigrams 0.7898
SVM BOW with trigrams 0.7216
SVM BOW with POS 0.7205
SVM TF-IDF with unigrams 0.8295
SVM TF-IDF with bigrams 0.8352
SVM TF-IDF with trigrams 0.8352
SVM TF-IDF with POS 0.8352
CNN Random Embedding 0.8693
CNN GloVe 0.8636

TABLE II
ACCURACY OF HATE SPEECH DETECTION MODELS.

contains the senders and receivers of hateful tweets, and one
that does not contain hateful tweets.

Data analysis and synthesis. To evaluate the important
characteristics of hate speech, we analyzed 1) the characteris-
tics of the accounts who actively disseminate hate speech, 2)
the characteristics of hateful tweets, 3) the characteristics of
communication networks resulting from hate speech, and 4)
representative messaging patterns.

IV. RESULTS

As shown in Figure 2, Twitter users predominantly tweeted
during the event and its immediate aftermath. The first day
of the extraction period represents only 4 hours of the day
(the terror attack happened at approx. 8:00pm). Afterwards,
the number of related tweets consistently decreases and drops
to almost zero by the end of the data extraction period.

Fig. 2. Number of tweets per day.

With respect to the accounts who spread hateful messages,
we evaluated their anonymity by using two characteristics: we
checked a) if an account is verified and b) if it includes a
link to an external Web page which allows other users to



identify the person behind the account2. As shown in Table
III, users who spread hate tend to act anonymously on Twitter.
However, it must also be noted that most users in our data-
set are considered anonymous. Thus, anonymity is not the
best indicator for the authorship and dissemination of hate
on Twitter.

Hate Speech Non-Hate Speech

Verified 0.64% 1.93%
Link to a Webpage 13.98% 21.07%

TABLE III
ANONYMITY OF TWITTER USERS.

With respect to the content of the tweets, we first removed
duplicates (i.e., retweets) and stop words from our data-set.
We then generated the document term matrix for two separate
subsets of our data-set (hateful tweets and non-hateful tweets).
We excluded words that appear in both subsets in order to
generate a list of unique words that help to distinguish hateful
messages from other messages. Figure 3 shows the most
common verbs and nouns for each subset normalized by the
overall number of messages.

Table IV shows that hateful tweets received slightly more
likes than non-hateful tweets on average. However, there is
a noticeable difference in the maximum number of likes.
In general, our analysis shows that hateful tweets do not
reach the number of likes given to non-hateful tweets
(max(nlikes(hate)) = 2861 vs. max(nlikes(nohate) =
4741)). However, we also confirmed that hateful tweets
polarize more than the non-hateful tweets. On average,
hateful tweets have a slightly higher number of 0-likes
(n0−likes(hate) = 0.88 vs. n0−likes(nohate) = 0.84) and
likes with extreme values (nextreme−likes(hate) = 0.0012 vs.
nextreme−likes(nohate) = 0.0010) (see also Figure 4).

Another trend can be observed when looking at the retweets.
On average, hateful tweets result in more retweets than the
non-hateful tweets (see Table IV). The higher retweeting rate
for hateful content is also seen in Figure 4. We found that
8.44% of the hateful tweets are shared more than 500 times,
while the non-hateful tweets showed a comparatively smaller
(7.14%) number of tweets that were shared more than 500
times. This indicates that even though hate is only published by
a few users (nusers(hate) = 11%, nusers(no−hate) = 93%,
see Table IV), hate can spread widely as it is shared more
frequently than the non-hateful tweets.

Next, we derived a direct messaging (DM) network that
contains all senders and receivers involved in the exchange
of hate (nodes represent Twitter users, edges represent hateful
messages)3. Basic information about the hate-exchange net-
work and the non-hate exchange network is shown in Table
V. Our results indicate that a comparatively small number of

2Note that while the profile picture could be taken into account, we did not
consider it in this study since we cannot make valid conclusions about the
legitimacy of the photo

3The direct messaging network was derived after removing the retweets
from our data-set.

Hate Speech Non-Hate Speech

Likes (mean, stdev) 3.76±71.14 3.45±57.44
Likes (max) 2861 4741
Retweets (mean, stdev) 163.96±243.21 152.24±233.71
Retweets (max) 922 922
Number of users 11% 93%
Tweeting rate 1.34±0.95 1.34±1.45

TABLE IV
USER REACTIONS (LIKES, RETWEETS) TO HATEFUL AND NON-HATEFUL

TWEETS.

users is responsible for the active spread of hate compared to
non-hateful tweets.

Figure 5 shows that the number of direct messages fluctuates
over time. The first two days of our data extraction period
exhibit the highest volume of messages. In the following
days the number of direct messages decreases with occasional
spikes on certain days (attributed to the availability of new
information about the event). Interestingly, we found that on
average the volume of hateful directed messages is higher than
the non-hateful messages (see Figure 5).

Hate Speech Non-Hate Speech

Senders 139 (0.27) 1213 (0.42)
Receivers 376 (0.73) 1710 (0.60)
Edges 563 3309

TABLE V
BASIC INFORMATION ABOUT THE DIRECT MESSAGING NETWORKS

INCLUDING THE ABSOLUTE AND RELATIVE NUMBER OF SENDERS AND
RECEIVERS, AS WELL AS EDGES (MESSAGES). THE RELATIVE NUMBER OF

SENDERS AND RECEIVERS IS AVERAGED OVER THE TOTAL NUMBER OF
UNIQUE USERS WHO PARTICIPATE IN A DM NETWORK.

Figure 5 also shows the number of active (senders) and
passive (receivers) users in content spreading. In both subsets,
there is a higher number of receivers than senders, indicating
that the active spreaders address (tag) more users in their direct
messages. This behavior also appears to be more prominent
with respect to hateful messages, i.e. on average there are more
receivers who are tagged in hateful messages compared to non-
hateful messages. Moreover, Figure 5 shows that most of the
receivers of hateful messages were tagged on the second day
(when the perpetrator was identified in the news) and fourth
day (when the motivation of the attacker became clearer) after
the event.

In order to find patterns that serve as basic building blocks
of the daily direct messaging (DM) networks (see Figure 6),
we utilized the concept of network motifs [23]. For motif
detection, we used the exact enumeration of all possible 3-node
subgraphs. Moreover, we used the stub matching algorithm
[25] to generate 1,000 null models for each day of the data
extraction period and subsequently identified those subgraphs
that are statistically significant for our real-world networks. In
total, we identified 28 different motifs (distinguished by edge
direction and edge weight). Figure 7 shows some simplified
examples of the motifs we identified 4.

4In this paper, simplified motifs are motifs that do not include edge weights.
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Fig. 3. Common verbs and nouns in hateful and non-hateful tweets (normalized by the total number of messages).

Fig. 4. Average number of favorites (likes) and retweets for hateful and non-
hateful tweets. Retweets are shown via a dashed line and likes via a solid
line.

We found two motifs that especially represent the exchange
of hate, both of which include multiple messages sent from a
single user. Moreover, both motifs (in their simplified form)
take a common shape presented as the orange graph in
Figure 7. Thus, in our data-set a characteristic messaging
behavior for hateful messages follows a pattern where one user
spreads multiple hateful messages to other users who passively
receive the content without any further engagement. In other

words, we did not observe bilateral engagement/discussions in
network motifs that are characteristic for the spread of hateful
messages during the 2020 Vienna terror attack.

Regarding the motifs representing the exchange of non-
hateful messages, there is a broad variety of motifs that was
detected in our data-set including the bilateral communication
between a pair of users, messaging cycles, messaging chains,
as well as the presence of self-loops (see the turquoise motifs
in Figure 7). Regarding the common simplified motif found in
the hate as well as the non-hate network (A← B → C), the
average edge weight in the hate-motif is 4.2 while its non-hate
counterpart shows the mean edge weight of 5.93.

V. DISCUSSION

When comparing the three approaches for the detection of
hate speech that we used in our case study, the lexicon-based
approach did not perform well as only 64% of the labels
(hate/non-hate) could be accurately predicted. However, during
the content analysis of the hateful tweets in our data-set, we
observed that there is a number of terms that frequently appear
in hateful tweets. This indicates that a more individualized
lexicon focusing on terror attacks could be derived to achieve
a better accuracy of the lexicon-based approach. However,



sender

receiver

Fig. 5. Temporal flow of the number of direct messages, senders, and receivers
of non-hateful and hateful tweets.

it is difficult to identify common words without having a
word corpus resulting from various similar events. However,
although the lexicon-based approach is easy to understand and
easy to implement on a new text corpus, the transferability
of a lexicon is questionable as hateful words can differ
considerably between different types of events.

In our study, the Support Vector Machine (SVM) approach
outperformed the lexicon-based approach. Although the ac-
curacy of the SVM is substantially higher and the model is
able to correctly predict many labels, additional features could
further improve the accuracy of this model. While sentiment
features received only little attention in previous research and
were used in a limited number of studies only (see, e.g., [31]),
they could potentially improve the accuracy of hate speech
detection because hateful tweets are associated with negative
sentiments or emotions (such as anger or disgust). In contrast,
tweets that express compassion or plead for solidarity are
associated with positive sentiments.

Due to the nature of the event that we analyzed, our data-
set contains more hate speech than regular everyday tweets.
Therefore, the findings presented in this paper cannot be gen-
eralized. However, they do comply with findings reported in
the related work. In general, the increasing use of multimodal
content, such as videos, photos, GIFs, or the large variety of
emojis that can make a comment appear racist for example,
brings a new challenge for detecting hate speech. For example,
[15] considered several components of a tweet and analyzed
not only the text, but also the images and the text in the images.

Our findings indicate that accounts who spread hateful
messages are more likely to show certain characteristics. We

found that less than 1% of the accounts spreading hateful
messages are verified Twitter accounts (in other words, more
than 99% of the hate spreaders are not verified accounts). This
confirms the findings of [24] who reported that an increasing
degree of anonymity increases the aggressiveness in OSNs.
In addition, [34] found that a higher likelihood of posting
hateful content is correlated with a higher level of anonymity
of the users. This finding is attributed to the phenomenon
of disinhibition when interacting online. Since much of the
content that is published online cannot be easily traced back
to the actual identity of the user, the corresponding users are
never pressured to explain him- or herself [34].

When considering the user behavior upon encountering hate
speech, we found that hateful tweets were retweeted more
often than the non-hateful tweets. In general, this shows the
potential of hate speech to widely spread across the network.
Thereby, we can confirm the findings of [4] who reported that
hate speech can spread widely via retweeting.

Our findings further showed that the emergence of hate
happens in bursts, i.e. it happens rapidly within a short period
of time, decreases in the aftermath of the event, but has the
potential to reappear at any time. The temporal patterns that
we observed can be explained in the light of the theory of
four stages of hate speech dissemination [8]. In particular,
we found that a considerable amount of hate speech occurs
directly after the event (called the influence stage [8]). This
could be associated with the high level of affective arousal5

of those affected by the terror attack.
According to [8], the influence stage is followed by the

intervention stage where the amount of hate speech decreases
and reaches a low level, resulting in the response stage.
Although there are some days in our data-set where the
number of hateful messages slightly increases (November 8
and November 11), the deviation from the decreasing trend is
not substantial. As the data for this study was only extracted
till 10 days after the attack, the results of the rebirth stage
[8] cannot be analyzed in this paper. However, it would be
interesting to extend this study over a longer time period.
For example, [38] analyzed the short-term and the long-term
consequences of terror attacks and found that people are
anxious and fearful up to some months after the event. Thus,
one question that we leave for future work is whether hate
will still (re)emerge after a longer period of time and whether
its structural patterns and dissemination characteristics will be
comparable to the findings in this paper.

A. Limitations

Our paper is based on a data-set related to the 2020 Vienna
terror attack and therefore the results cannot be generalized
for other types of events that cause the emergence of hate
speech. While other terrorist attacks are more likely to show
similar effects on Twitter to the ones discovered in this
paper, communication patterns emerging in the context of non-
terrorist events might look different. However, such aspects

5“Affective arousal describes the state of feeling awake, activated, and
highly reactive to stimuli.” [26]



2-Nov 3-Nov 4-Nov 5-Nov

6-Nov 8-Nov 9-Nov 11-Nov

Fig. 6. Daily hateful communication networks.

Fig. 7. Motifs detected in hate and non-hate networks.

could not be taken into consideration by analyzing a single
case study only.

Another limitation lies in the selection of the key-words
and hashtags that we used for data extraction and the rate
limits imposed by Twitter. Therefore, we cannot exclude the
possibility that we missed some relevant tweets.

Moreover, regarding the motif detection, the exact impact
of a different null model generation algorithm on the corre-
sponding subgraph distribution is unclear.

VI. CONCLUSION

In this paper, we analyzed a data-set consisting of 36,685
tweets that have been sent in the aftermath of the 2020 Vienna
terrorist attack. We used several approaches to detect hate
speech and found that the CNN approach performed with
the highest accuracy. We also found that most tweets directly
follow after the triggering event has occurred while the number

of related messages rapidly decreases in the days after the
event.

We also found that Twitter accounts responsible for the ac-
tive spread of hateful messages are predominantly anonymous,
and that hateful comments are more commonly retweeted com-
pared to other tweets. Our analysis further revealed one sig-
nificant pattern for the spread of hate (a message-broadcaster
pattern). Moreover, we also found that other types of network
motifs exist which only emerge in non-hate networks.

In our future work, we aim to work on the improvement
of different hate speech detection techniques. In addition, it
would be interesting to examine the role of social bots with
respect to the spreading of hateful messages.
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