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Abstract—We report on an experiment that used ten dif-
ferent machines running on a standardized cloud platform in
five different geographical locations around the globe (Frank-
furt/Germany, Mumbai/India, Sydney/Australia, Seoul/South Ko-
rea, Virginia/USA) to collect datasets using Twitter’s public free-
of-charge API. Each of the ten machines extracted the tweets
at the exact same time and using the exact same Twitter API
parameters. We found that the characteristics of the datasets
collected in different locations vary considerably, potentially
affecting any analysis performed on such location-biased data.
For example, the number of exactly identical tweets (i.e. all
90 metadata attributes of the tweets are the same for all ten
machines) lays only between 0.15% and 20%. Based on these
findings, we derive recommendations on how to mitigate the
location-bias in practice.

Index Terms—Data analysis, Data collection, Data quality,
Network Science, Social Networks, Twitter

I. INTRODUCTION

In recent years, datasets consisting of Twitter messages (so
called tweets) have been extensively used for studies in various
scientific fields ranging from sociology and psychology to
network science, see, e.g., [1]–[6].

Twitter’s popularity among researchers as a data source re-
sults from clear terms of use and a well-maintained application
programming interface (API) that allows for an automated
collection of large datasets. Twitter’s API is publicly available
and offers various API endpoints to access different data, e.g.
one can collect tweets that include user-defined combinations
of keywords and/or hashtags. The downside of using Twitter’s
open (free-of-charge) API as a data source is that researchers
are confined to samples of data. This is, on the one hand,
due to technical restrictions of the API (varying service levels
and rate limits) as well as different commercial API options
offered by Twitter.

While Twitter provides access to commercial and special-
purpose academic accounts without or with lowered restric-
tions (e.g., increased rate limits or transfer volumes), the costs
of obtaining unlimited commercial access are prohibitively
high for most researchers. Moreover, an academic account is
only granted on request provided that the respective research
topic and the researcher’s current job position meet certain
criteria. Hence, Twitter’s free API endpoints remain very
popular and widely being used for collecting datasets.

A second reason for researchers usually being limited to
data samples is the dynamic, ever-changing nature of the whole
population of messages and users over time. Twitter users can
modify or remove content as well as their relationships to
other users. Moreover, Twitter’s content moderation remains a
blackbox for the most part. These conditions lead to varying
samples depending on when a dataset has been collected. The
short- and long-term decay of Twitter data has been actively
investigated by prior research [7].

Therefore, the question must be asked whether different
samples are identical for researchers who are extracting tweets
regarding the same topics (i.e., the same keywords and/or
hashtags) but at a slightly different time or from a different
location (for example, another Internet node, country, or
continent).

Previous research investigated whether certain types of
samples provided by Twitter are representative for all existing
tweets including a particular hashtag. To this end, Morstatter
et al. [8] explored Twitter’s Streaming API12 which promises
a 1% sample of all tweets for a particular hashtag. They
compared certain characteristics of the retrieved dataset to the
full collection of tweets collected via the commercial Twitter
Firehose API. Our study complements the work of Morstatter
et al. by investigating if the datasets that researchers collect
via Twitter’s search API 3 are comparable or differ when con-
sidering the researcher’s network-topological (Internet node)
and geographical locations (country, continent).

Thus, in contrast to previous studies [7]–[11] which com-
pare datasets collected via different Twitter APIs, our work
compares datasets retrieved via same Twitter API but from
different geographical locations. Our study aims at making
recommendations for researchers who collect datasets from
Twitter in practice.

Section II gives a brief introduction to important concepts
used in our work. Section III then documents our setup
for orchestrated data collections of Twitter data from dif-
ferent locations and gives an overview of the resulting data
collections. In Section IV, the key findings are presented.

1https://developer.twitter.com/en/docs/twitter-api (v.1.1)
2All links have been last accessed 28.07.2022
3https://developer.twitter.com/en/docs/twitter-api
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Section V iterates over the known limitations, followed by
the recommendations for other researchers VI. An overview
of related work is given in Section VII. Section VIII concludes
the paper.

II. BACKGROUND

a) Twitter API: At the time of writing, Twitter offers two
versions of its API in parallel, version 1.1 (v1.1) and version 2
(v2). Tweets can either be collected as a real-time data stream
or as a historical collection. Both of these data extraction
methods can be used with Twitter’s Standard (free-of-charge)
API v1.1 and promise to provide the user with a sample
of all tweets on the requested hashtag. In contrast, Twitter’s
commercial Premium API v1.1 enables users to extract all
tweets that have been sent over the last 30 days.

Twitter’s API v2 has been first introduced in 2020. Like
v1.1, API v2 provides free access via the Essential and
Elevated access types which enforce different rate limits for
tweet extraction. In addition, API v2 offers a new access type
for Academic Research4 which is available for researchers at
academic institutions or universities. An Academic account
also enforces monthly rate limits (10 million tweets per month)
but allows users to access all tweets that have been published
since 2006.

For many scientific purposes, the analysis of historical
tweets is preferable as compared to a real-time analysis,
because a tweet’s attributes may change over time (e.g. the
favorite/like-count or the retweet count might change). Pre-
vious studies found that for digital messages most responses
happen within the first day and that barely any response occurs
three days after a message has been sent (see, e.g., [12]–[14]).
Thus, in order to consider dynamic message attributes such
as retweet-count or favorite-count in a data analysis, tweets
should be collected three or more days after they have been
published and the values of dynamic attributes have settled. In
this context, it has to be mentioned that Twitter’s free API only
provides access to historical tweets if they are not older than
6-9 days5, leaving a window of 3-6 days for the collection of
tweets related to a particular topic of interest.

b) Twitter data model: Each tweet collected via one of
Twitter’s APIs contains 90 different attributes (such as status
id, tweet text, retweet count, favorite count, or attached media).
These 90 attributes can be separated into categories based
on the consistency of their respective attribute values. The
first category includes attributes that are static over time such
as a tweet’s status id, the sender’s user id, and the tweet’s
text. The second category includes attributes whose values
may change over time (i.e. dynamic attributes). Examples
of dynamic attributes are the retweet-count or the favorite-
count of a tweet. The third category includes attributes which
are dynamic but typically do not change in the short-term.
Examples for such attributes are the user name or the status
of a user account (e.g. a user may be a ”verified” user or not).

4https://developer.twitter.com/en/products/twitter-api/academic-research
5https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/guides/
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c) Network derivation: The tweets, including the 90
attributes mentioned above, can be used to derive various types
of networks (e.g., a retweet network or a messaging network
based on @-mentions). Such network structures are then used
for applying different network analysis techniques (see, e.g.,
[15]–[18]). Moreover, the hashtags and keywords included in a
tweet can be used to derive topic models. The co-occurrence
of the same hashtag(s) in different tweets can also be used
to identify relations between users who are discussing similar
topics (see, e.g., [19]).

III. MULTI-SITE TWITTER MINING

a) Infrastructure: For our study, we simultaneously col-
lected multiple datasets based on the same hashtags but
from different geographical locations. The data collection
was performed using a distributed system of ten virtual
machines (VMs) running in five different geographical lo-
cations around the globe (Frankfurt/Germany, Mumbai/India,
Sydney/Australia, Seoul/South Korea, Virginia/USA). For each
of these five locations we rented two independent VMs via
Amazon Web Services (AWS)6.

In order to coordinate the data collections procedures
running in the 10 VMs, an additional device, running in
Vienna/Austria, acted as an orchestrator. Moreover, a storage
server, also running in Vienna/Austria, was used for per-
manently saving the data collected from the 10 VMS (see
Figure 1). First, the orchestrator dispatches the data collection
scripts to the VMs and the storage server (orange arrows in
Figure 1). By executing these scripts, the VMs perform a
scheduled data collection. Moreover, in 15-minutes intervals
the data is fetched from the individual VMs and stored on the
central storage server (blue arrows in Figure 1). In order to
ensure that all VMs begin collecting Twitter data at the exact
same time, we automatically synchronized the corresponding
execution times.

Fig. 1. Architecture for multi-site Twitter mining

6For our study, we selected the lightest VM option that was available at the
time of writing (512 MB RAM, 1 CPU core and 20 GB of hard disk storage).
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Our data collection scripts accessed Twitter’s API via the
“rtweet” library7. Moreover, each of the 10 VMs used a sepa-
rate Twitter developer account for data collection. The physical
locations of the corresponding Twitter accounts correspond to
the respective AWS regions.

b) Data sets: Table I presents a list of the collected hash-
tags, the maximum number of tweets collected, the collection
time window (from, until), as well as the day of data collection.
For the first group of hashtags, our aim was to cover a wide
variety of topics (e.g. major events, pop culture) and collection
sizes. The second group of hashtags is related to the currently
ongoing war in Ukraine.

Moreover, for two of the hashtags related to the Ukraine
war, we performed the tweet collection procedure twice in
order to explore, whether the differences in the number of
collected tweets per VM will persist during a second collec-
tion. Each of the 17 data collection procedures are denoted by
the prefix “C” and are numbered chronologically. Each of the
collections consists of ten individual datasets, collected by the
ten different VMs respectively. Each collection of tweets was
extracted once and the extraction was not restarted if errors
occurred during the extraction procedure (e.g. the Twitter API
closed the connection; this extraction procedure was chosen
on purpose, for further details see below).

TABLE I
OVERVIEW OF TWEET COLLECTIONS FOR A GIVEN HASHTAG INCLUDING

THE NUMBER OF MESSAGES (#T: MAXIMUM NUMBER OF TWEETS
OBTAINED FROM ANY OF THE 10 LOCATIONS), TIME WINDOW FOR DATA

COLLECTION, AS WELL AS COLLECTION DATE. ”REDO” DENOTES A
REPEATED COLLECTION PERFORMED ON A SUBSEQUENT DAY.

Coll. Hashtag #T (max) From Until Coll. on
C01 covid19 310.879 18.11.21 21.11.21 25.11.21
C02 BlackFriday 250.570 23.11.21 26.11.21 29.11.21
C03 BlackFriday 550.361 26.11.21 28.11.21 01.12.21
C04 Omicron 526.927 29.11.21 03.12.21 06.12.21
C05 HongKong 18.957 19.12.21 24.12.21 29.12.21
C06 Happy-

Birthday-
Taehyung

2.577.930 29.12.21 01.01.22 04.01.22

C07 Djokovic 218.966 04.01.22 08.01.22 11.01.22
C08 tsunami 125.793 14.01.22 20.01.22 24.01.22
C09 Ukraine 85.641 18.01.22 22.01.22 25.01.22
C10 SuperBowl 1.826.490 13.02.22 15.02.22 20.02.22
C11a Putin 197.941 21.02.22 23.02.22 27.02.22
C11b Putin (redo) 197.904 21.02.22 23.02.22 28.02.22
C12 Ukraine 436.420 21.02.22 23.02.22 25.02.22
C13a Putin 590.680 23.02.22 25.02.22 01.03.22
C13b Putin (redo) 585.561 23.02.22 25.02.22 02.03.22
C14 Ukraine 1.144.923 10.03.22 13.03.22 17.03.22
C15 Ukraine 1.474.915 15.03.22 20.03.22 23.03.22

IV. FINDINGS

We analyzed the 17 collected datasets (see Section III) from
three different perspectives. First, we analyzed the data based
on the geographical location of the respective VM (node-level
data). Second, we performed a content analysis to compare the
exact content of the collected tweets (i.e. attribute-level data).
Third, we analyze and compare the retweet-networks that can
be derived from the datasets.

7https://cran.r-project.org/web/packages/rtweet/rtweet.pdf

A. Node-level data

In the first step, we look at the number of unique tweets
collected per VM and hashtag. A unique tweet is identified by
its status id. Therefore, duplicates can easily be detected (in
contrast to retweets, duplicates are not counted as additional
tweets). The total number of tweets per location and hashtag
are shown in Table II. For 10 of our 17 collections, we observe
an apparent size difference of at least one of the datasets. In
these 10 cases, the API connection was closed by Twitter (see
also the names of logged messages in Table II).

Note that for collections C05 and C12, the differences in the
sizes are less than 5%, therefore one might still consider them
as regular collections. However, the variations in the remaining
8 collections are considerable (see Table II).

Fig. 2. Cummulative fraction of tweets (unique status ids) collected per
location, for collections C01 (blue), C10∗ (orange), C15∗ (black)

In a basic research scenario, one may be tempted to collect
a single dataset, from a single location. The numbers docu-
mented in Table II already indicate that such a single-location
collection might be biased. Therefore, we now explore how
many additional unique tweets can be found by collecting
another dataset (including the same keywords/hashtags) from
a different geographical location.

In this context, Figure 2 depicts a worst-case scenario for
three collections (here C01, C10∗, C15∗)8. Here, the x-axis
depicts the ten VMs/locations (labeled from L01 to L10). The
y-axis depicts the respective fraction of unique tweets (in %)
that a particular VM/location adds to the overall dataset.

For example, for C10∗ the worst-case location (here Mum-
bai 1, see also Table II) provides only 13.5% of the maximum
number of unique tweets. If a researcher decided to addition-
ally send the same request from the second-worst location
(L02, here Frankfurt 1), this would increase the percentage of
unique tweets to just 30.3%. Only after including the dataset

8We define this worst case as one in which a researcher collects tweets
from a single location (here L01) while the resulting dataset consists of the
smallest number of tweets (as compared to the overall dataset resulting from
a union of all datasets collected by the ten VMs).

https://cran.r-project.org/web/packages/rtweet/rtweet.pdf


TABLE II
NUMBER OF TWEETS COLLECTED PER DATASET PER HASHTAG AND THEIR RESPECTIVE LOGGED MESSAGES

Collection Frankfurt 1 Frankfurt 2 Mumbai 1 Mumbai 2 Sydney 1 Sydney 2 Seoul 1 Seoul 2 Virginia 1 Virginia 2
C01 310.802 310.803 310.811 310.810 310.808 310.806 310.805 310.879 310.814 310.808
C02 250.557 250.559 250.560 250.560 250.561 250.559 250.567 250.570 250.563 250.560
C03 550.321 550.312 550.361 550.361 550.332 550.339 550.330 550.313 550.310 550.304
C04 526.804 526.811 526.803 526.804 526.813 526.815 526.927 526.830 526.809 526.812
C05 18.886 18.868 18.366 18.366 18.371 18.371 17.8831 18.532 18.935 18.957
C06* 2.351.611 2.577.831 2.574.730 2.577.930 2.575.355 2.574.470 38.9852 2.577.219 2.575.290 2.576.477
C07 218.831 218.827 218.841 218.842 218.841 218.842 218.965 218.966 218.858 218.836
C08* 125.789 125.793 78.7111 78.7111 78.7101 78.7121 124.518 78.7141 125.779 125.788
C09 85.640 85.637 84.406 84.406 84.409 84.412 85.622 85.622 85.640 85.641
C10* 554.4984 1.825.922 247.7313 1.825.615 1.825.616 1.825.577 1.826.056 1.826.146 1.826.476 1.826.490
C11a* 197.909 197.910 197.937 197.941 197.939 197.932 197.939 63.3562 197.907 197.909
C11b 197.876 197.873 197.902 197.902 197.904 197.914 197.891 197.897 197.862 197.862
C12 436.391 436.392 436.379 432.2092 436.401 436.409 436.420 436.399 436.409 436.409
C13a* 590.543 590.548 34.5772 590.600 590.646 590.674 590.653 590.680 590.607 590.601
C13b* 585.428 585.434 585.518 477.1152 585.588 585.561 585.547 585.549 585.430 585.436
C14* 1.068.768 1.100.893 1.100.851 1.100.832 1.144.885 1.144.892 1.144.923 150.0332 1.100.894 1.100.907
C15* 1.309.5175 1.408.257 590.0463 445.3483 1.381.884 1.381.923 1.382.012 1.382.025 1.467.636 1.474.915

Logged messages:
1 Two confirmations that the script exited correctly
2 Error in curl::curl fetch memory(url, handle = handle) : OpenSSL SSL read: SSL ERROR SYSCALL, errno 104
3 Error in curl::curl fetch memory(url, handle = handle) : transfer closed with outstanding read data remaining
4 Killed
5 Over capacity - 130

obtained from a third location (e.g. L03, here Sydney 2), one
arrives at the maximum number of tweets (100%) for C10∗.

Under the worst-case assumption, two of our collections
would require three or more locations to obtain a dataset
including at least 90% of all tweets. For five other collections
it would requires two or more locations to collect a corre-
sponding dataset (see also Table II). Nevertheless, in the best
case a single location may already offer more than 90% of all
tweets available (see, e.g., C01 in Figure 2).

However, note that, based on our results, we cannot give any
recommendation for the ”best” data extraction location. Yet,
there is clear evidence that collecting a second dataset (for the
same keywords/hashtags) from the same or a different location
may considerably increase the number of unique tweets. A
dataset that merges the tweets collected from three different
notations will most often include the majority (at least 90%)
or even all tweets (100%).

a) Hashtag Cooccurrence: For the hashtag cooccurrence
analysis, we parsed the corresponding message texts (i.e. the
publicly available text of a tweet). The text of a tweet is
static and therefore always identical for each occurrence of a
particular status id. In contrast, other attributes, including the
”hashtags” attribute of a tweet, might include varying values,
even for the same status id.

For the collections with a similar size across all locations
(such as C01) we found that the hashtag cooccurrence does not
show noticeable differences between the individual locations.
However, as soon as a collection includes at least one outlier
dataset (i.e. a location that extracted a smaller dataset) we
observe clear differences in the resulting hashtag cooccurrence
and, specifically, in the order of cooccurrence (i.e., from most
to least frequent).

Table III depicts one such example for C10 in which the
extracted hashtags for the two smaller datasets in this collec-

tion, extracted at Frankfurt 1 and Mumbai 1, are different.
In the case of C15 (see Table IV), the differences in the
results of the hashtag cooccurrence are not only found in the
datasets that suffered from an error during data extraction.
Here, the list of hashtags for one of the affected datasets (here
Frankfurt 1) matches the list of the majority of the rest of the
collected datasets. However, the two datasets from Virginia
offer different hashtags, despite them receiving all available
tweets from the API.

TABLE III
COMPARISON OF HASHTAG COOCCURRENCE (C10*)

Frankfurt 1 Mumbai 1 Rest
HalfTimeShow HalfTimeShow HalfTimeShow
PepsiHalftime dogecoin PepsiHalftime
SuperBowlLVI PepsiHalftime SuperBowlLVI
dogecoin SuperBowlLVI NFL
RamsHouse NFL RamsHouse
NFL CryptoInu SBLVI
SBLVI metaverse Bengals
metaverse Eminem RuleItAll
Eminem bnb Rams
NFTs RamsHouse NFTs

TABLE IV
COMPARISON OF HASHTAG COOCCURRENCE (C15*)

Frankfurt 1,2 Mumbai 1 Virginia 1,2 Mumbai 2
Sydney 1,2
Seoul 1,2
Russia Russia Russia Russia
StandWithUkraine StandWithUkraine StandWithUkraine StandWithUkraine
Putin Putin Putin UkraineUnderAttack
UkraineRussiaWar UkraineUnderAttack UkraineRussiaWar Putin
Russian UkraineRussiaWar Russian RussiaInvadedUkraine
UkraineUnderAttack Russian Kyiv UkraineRussiaWar
Kyiv RussiaInvadedUkraine UkraineUnderAttack RussianUkrainianWar
UkraineWar RussianUkrainianWar UkraineWar Russian
Mariupol UkraineWar Mariupol StopPutin
Ukrainian Kyiv Ukrainian Kyiv



B. Attribute-level data

For the attribute-level analysis, we first examined the num-
ber of exactly overlapping tweets per collection (i.e. all
90 attributes of a particular tweet are the same for all 10
datasets/locations). The results are summarized in Table V.

Figure 3 shows the maximum number of tweets per hashtag,
the partial overlap, and the exact overlap between all 10
locations. Note that the exact overlap between the different
locations is always relatively low. In cases where all locations
within a particular collection have a comparable number of
tweets the overlap lays between 8.4% (for C04) and 20% (for
C02) only. For the cases where considerable differences in
the dataset sizes were observed the overlapping percentage of
tweets drops to numbers between 0.15% (for C10) and 14%
(for C13b).

TABLE V
NUMBER OF SAME STATUS IDS COLLECTED ACROSS ALL DATASETS AND

NUMBER OF TWEETS WITH ALL EXACTLY MATCHING ATTRIBUTES ACROSS
ALL DATASETS PER COLLECTION

Collection Same Tweet Exact overlap

C01 310.757 28.837
C02 250.523 51.771
C03 550.172 80.513
C04 526.672 44.169
C05 17.395 3.076
C06* 38.947 9.878
C07 218.785 32.611
C08* 78.707 12.802
C09 84.393 13.540
C10* 247.679 28.182
C11a* 63.318 12.488
C11b 197.807 35.451
C12 431.996 32.886
C13a* 34.550 6.923
C13b* 476.819 81.310
C14* 149.967 22.094
C15* 445.210 46.322

Fig. 3. Maximum number of tweets, Partial overlap, and Exact overlap
between all 10 datasets per hashtags

Next, we analyzed tweets that have been extracted at all
ten locations (i.e. a tweet with the same status id has been

extracted at each location) but show at least one difference
across the 90 attribute values. We found that the relative
number of partial overlaps (i.e. same status id while other
attribute values differ) is significantly higher than the number
of exactly overlapping tweets (i.e. all attribute values are the
same for all ten locations). Figure 3 show the maximum
number of tweets (blue) and partially overlapping tweets
(green).

In order to further analyze the partial differences between
tweets with the same status id, we use the classification of
static and dynamic attributes mentioned in Section II.

As a little surprise, we also found variations in static
attributes (e.g. retweet location, mentions user id, hashtags).
Such variations are difficult to explain, as the corresponding
attributes are static and therefore are expected to remain stable
over time. However, it should also be mentioned that the
fraction of tweets which showed varying values for at least
one static attribute was lower than 1%.

Moreover, we found unexpected mismatches between times-
tamps (e.g. for the quoted created at attribute) with an exact
difference of 1 hour. Such mismatches, however, may simply
be explained by different time zones. Yet, such time differ-
ences are still unusual since all timestamps are recorded in
UTC9.

Furthermore, we also found a few variations in the ”hash-
tags” attribute. Such variations are also unusual, since a tweet’s
hashtag attribute is based on the hashtags in the corresponding
text, and the text of a tweet is not supposed to change. Upon
further investigation, we extracted the hashtags from tweet
texts ourselves and discovered that sometimes not all hashtags
found in the text are listed in the ”hashtags” attribute field.

Nevertheless, aside from such smaller and unusual differ-
ences between tweets with the same status id, most differences
can actually be tracked back to dynamic attributes such as
the retweet count. As a matter fact, the majority of such
differences can be attributed to the 19 different counter at-
tributes included with each tweet (e.g. 1.605.046 variations in
approximately 526.000 tweets for C04 result from differences
in one or more counter attributes, such as retweet count).
Figure 4 depicts the maximum differences in the retweet count
values between all 10 locations per tweet per hashtag.

While in many cases the tweet counter attributes from
at least one location show differences of the corresponding
counter (e.g. retweet count) by 1 or 2, in some extreme cases
the values may be up to 20 times bigger in certain locations
(e.g. 23.585 retweets in four locations and 458.438 retweets
in the remaining six locations for C03). On the one hand, this
indicates that for the majority of the cases, a tweet’s attribute
values are comparable, yet one should be cautious when using
the exact count values.

Similarly, values of the favorite count attribute (i.e. likes)
per tweet typically vary by 1 as shown in Figure 5. The biggest
observed differences concern the values describing the number

9https://developer.twitter.com/en/docs/twitter-ads-api/timezones
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of tweets that a user has liked (i.e., favorites count) as seen
in Figure 6.

Fig. 4. Maximum difference in retweet count values per tweet per hashtag

Fig. 5. Maximum difference in favorite count values (i.e., likes) per tweet
per hashtag

Fig. 6. Maximum difference in user favorites count values per hashtag

C. Network-level data

In order to evaluate the differences in the datasets with
regard to network structures that can be derived from the
respective tweets, we construct and analyze retweet networks
for each of the locations. In this step, the objective is to

investigate whether characteristic and substantial differences
exist in the network structures derived from different datasets.

In order to derive the retweet networks, we first subset all
retweets for all locations. Each tweet is then modeled as a
node and edges connect an original tweet to the corresponding
retweets. Next, we compute basic network measures (number
of nodes, number of edges, number of connected components,
maximum degree) to enable a basic comparison of the result-
ing networks.

In the collections where all locations provided a similar
number of tweets, we found small differences in the basic
characteristics of the derived networks. One such example for
C03 is depicted in Table VII. However, as soon as an outlier
dataset/location exists in a collection, we observe considerable
variations between the retweet networks. Table VI displays
one such example based on C15*, which contains three outlier
datasets. Here, the datasets with the biggest variations (“Mum-
bai 1” and “Mumbai 2”) lead to networks containing less than
half of the vertices and edges of the remainder of the datasets.
The differences of these two networks are also obvious when
comparing the number of connected components and the
maximum degree. However, we also see that in the case of
the “Mumbai 1” dataset, the max degree is the same as for
the non-outlier networks. Depending on the type of network
analysis a particular researcher is planning to conduct, the
results may thus differ significantly, depending on the location
the respective dataset has been extracted from.

For example, the network resulting from the dataset ex-
tracted from “Seoul 1” includes 76.656 (or 7%) additional
edges and 6.076 (or 5%) additional connected components as
compared to “Virginia 2”.

TABLE VI
NETWORK ANALYSIS MEASUREMENTS FOR THE RETWEET NETWORKS

CONSTRUCTED USING EACH OF THE INDIVIDUAL DATASETS AND A
MERGED DATASET, CONTAINING ALL TWEETS FROM THE INDIVIDUAL

DATASETS FROM C15*

Dataset |V | |E| Connected Max
Components Degree

Frankfurt 1 1.151.689 1.048.508 103.181 15.223
Frankfurt 2 1.239.081 1.128.180 110.901 15.223
Mumbai 1 531.705 481.243 50.462 15.223
Mumbai 2 404.316 364.838 39.478 9.473
Sydney 1 1.215.285 1.106.309 108.976 15.223
Sydney 2 1.215.290 1.106.322 108.968 15.223
Seoul 1 1.215.341 1.106.359 108.982 15.223
Seoul 2 1.215.336 1.106.350 108.986 15.223
Virginia 1 1.291.652 1.177.045 114.607 15.222
Virginia 2 1.298.073 1.183.015 115.058 15.222
All 1.298.647 1.183.473 115.174 15.223

V. LIMITATIONS

To the best of our knowledge the experiment described
in this paper is the first to address the comparability of
Twitter datasets collected from various geographical locations
at the exact same time and using the exact same Twitter API
parameters. Even though we aimed to conduct our experiment
in a reproducible manner, our approach does have certain
limitations.



TABLE VII
NETWORK ANALYSIS MEASUREMENTS FOR THE RETWEET NETWORKS
DERIVED FROM EACH OF THE INDIVIDUAL DATASETS AS WELL AS THE
MERGED DATASET (CONTAINING ALL TWEETS FROM THE INDIVIDUAL

DATASETS IN C03)

Dataset |V | |E| Connected Max
Components Degree

Frankfurt 1 441.065 395.160 45.911 31.391
Frankfurt 2 441.064 395.160 45.910 31.391
Mumbai 1 441.042 395.138 45.910 31.390
Mumbai 2 441.043 395.139 45.910 31.390
Sydney 1 441.042 395.137 45.911 31.390
Sydney 2 441.040 395.135 45.911 31.390
Seoul 1 441.055 395.151 45.910 31.390
Seoul 2 441.056 395.151 45.911 31.389
Virginia 1 441.045 395.143 45.908 31.389
Virginia 2 441.043 395.141 45.908 31.389
All 441.106 395.197 45.915 31.393

In order to exclude any influence resulting from differences
in the technical environment that is used for executing the
data collection scripts we chose to use a standardized cloud
platform; in our case we used AWS VMs. While to the best
of our knowledge all VMs in each of the locations are set up
in the same manner, we cannot exclude that the results might
have been slightly different if we used another cloud platform
(e.g. Microsoft Azure).

Moreover, the iterative collection method used in our study
(i.e. collecting 200 tweets every 10 seconds) originated from
the limitations of the VMs that we rented for our experiment.
Alternatively, all Twitter data could also be collected via a
smaller number of requests (e.g. a batch of 50.000 tweets at
once).

VI. RECOMMENDATIONS FOR TWITTER-BASED RESEARCH

Based on our findings, we can recommend the following
measures:

R1. Use three or more locations: We recommend col-
lecting Twitter data from a minimum of three independent
locations and machines in parallel (while all extraction param-
eters other than location remain unchanged). Here, a unique
location is defined as a distinct machine using a distinct Twitter
account. The actual network-topological and geographical
locations (e.g., using a second node within the same or in
another AWS availability zone) did not show a significant
difference in our setting.

This way, even in a worst case scenario, approx. 90% of
tweets that are retrievable via the free search API can be
collected (see Fig. 2). If unfeasible (i.e. if it is not possible
to extract data from three or more locations/machines), aim
for replicating the data-extraction procedure within a narrow
time window from the same location, in order to extract a
more representative dataset. Make sure to eliminate partial
and exact (inter-source) duplicates from the combined dataset
before analyzing the respective data. Additionally, based on
the collection setup (i.e. programming language, library used)
the output messages and logs of the collection process may
be a good indication if the extraction procedure has been
interrupted (i.e. an error occurred). API errors usually result

in a dataset only representing a subset of all of the possible
tweets which are available via the free version of the API.

R2. Use a three-day delay: Because some of the 90
attributes associated with each tweet are dynamic, the corre-
sponding attribute values (such as retweet count or favorite/like
count) may differ depending on the exact extraction time as
well as depending on the location the data is extracted from.
Previous research has shown the vast majority of all reactions
happen within the first day and almost no reactions happen
three days after a message has been sent [12]–[14]. Therefore,
researchers who are not performing real-time data analysis
tasks, should collect Twitter datasets with a three-day delay,
after the dynamic attribute values have settled.

R3. Use consistent/stable attributes: Network structures
derived from Twitter messages (such as retweet-networks or
@-messaging networks) should either be derived from datasets
that have been extracted with a three-day delay (R2) or
should be based on static attributes only (such as @-mentions
included in the text of a tweet). Table VIII shows a list of
static and dynamic attributes which have been identical in our
experiment for each unique tweet over all locations/datasets.

Moreover, remember that certain attributes of a tweet are
directly connected to others. For example, a Twitter user
name is also included as part of the URL referring the
respective profile picture. Thus, if a user name is changed the
corresponding URLs are adapted accordingly, and the previous
URLs are no longer valid.

TABLE VIII
CONSISTENT ATTRIBUTES AND THEIR EXPECTED CHANGE OVER TIME

Attribute name Expected attribute type
account created at static
account lang dynamic
ext media type static
is retweet static
lang static
profile background url dynamic
protected dynamic
quote count dynamic
quoted location static
reply count dynamic
retweet created at static
retweet source static
retweet status id static
retweet text static
retweet user id static
source static
text static
user id static
verified dynamic

Note: For this evaluation, we used the status id as a unique identifier.
It is assumed to be a reliable attribute.

VII. RELATED WORK

Previous research has shown that factors such as API
endpoint and access level used (see Section IIa) as well as
the time of a (repeated) tweet collection influence the data in
terms of it’s representativeness as a sample population.

Morstatter et al. [8] compared the Streaming API to APIs
offering bigger or full samples (e.g., academic API, Fire-
hose). Data obtained from two different priority types of the



Streaming API (i.e., Spritzer and Gardenhose) were found
to vary based on activity patterns of the Twitter users and
their sentiments [10]. Another experiment by Pfeffer et al. [9]
revealed using a different access level to the Sample API
(academic, free) can lead to over- or under-representing certain
user accounts in the corresponding sample. Furthermore, [20]
investigated Twitter datasets when the filtering option is used
with the Streaming API.

Pfeffer et al. [7] analyze and compare data collected via the
various v1.1 and v2 APIs in terms of their coverage over time,
showing an approximate drop of 10% in the number of tweets
over time. This decay increases over longer periods of time
up to 30% after four years. In addition, tweet metadata has
been found to change over time [21]. Timondea [22] focused
on the removal of tweets with strong political content over
time. He found that 20-30% of tweets deemed potentially
sensitive could not be recovered using the Search API, and 2-
5% were not retrieved via the Streaming API. Kim et al. [11]
compared the Stream, Search, and Firehose API endpoints by
collecting data over a certain period of time using the same
search parameters, finding that the covered user accounts, the
quantity of the dataset, and the tweet content vary heavily
between the different endpoints.

VIII. CONCLUSION

In this paper, we report our findings regarding the impact
of geographical location when extracting data using Twitter’s
free-of-charge search API. Our work complements previous
contributions focusing on different API endpoints as well as
on different extraction times. We applied a multi-site Twitter
mining approach for orchestrated data retrieval, deployable on
a conventional, standardized, low-cost Cloud infrastructure.
The resulting data collections are analyzed at three abstrac-
tion levels: node level, attribute level, and derived network
structures.

Our key findings include: Datasets from single locations
are frequently incomplete due to unexpected API-level and
connection-level failures. When comparing all datasets col-
lected in parallel from 10 different machines for otherwise
identical searches, we found different variations in terms of
the data records (tweets) retrieved. While comparatively small
in absolute numbers (# tweets), we show that even small data
inconsistencies between samples may severely affect analyses
at all three levels. At the attribute level, only 7.4% of the
retrievable data records (tweets) carry identical metadata (e.g.,
retweet count, likes) when comparing the individual search
results. Even attributes deemed fixed or unchangeable are
found to vary between geographical locations.

We also derived retweet networks for each location and
compared the resulting network structures (vertices, edges,
connected components, and max degree). The derived net-
works vary substantially depending on the analysis task at
hand. We compiled these findings into three recommendations
to improve Twitter data mining in practice. In our future work,
we will incorporate additional access levels to Twitter’s API
and we will extend the network-level analysis.
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